河岸植物朝向在河流流动中的重要性:对水流结构和阻力的影响

IF 4.6 Q2 ENVIRONMENTAL SCIENCES
R. Boothroyd, R. Hardy, J. Warburton, T. Marjoribanks
{"title":"河岸植物朝向在河流流动中的重要性:对水流结构和阻力的影响","authors":"R. Boothroyd, R. Hardy, J. Warburton, T. Marjoribanks","doi":"10.1080/24705357.2019.1573648","DOIUrl":null,"url":null,"abstract":"Abstract In a series of high resolution numerical modelling experiments, we incorporated submerged riparian plants into a computational fluid dynamics (CFD) model used to predict flow structures and drag in river flow. Individual plant point clouds were captured using terrestrial laser scanning (TLS) and geometric characteristics quantified. In the first experiment, flow is modelled around three different plant specimens of the same species (Prunus laurocerasus). In the second experiment, the orientation of another specimen is incrementally rotated to modify the flow-facing structure when foliated and defoliated. Each plant introduces a unique disturbance pattern to the normalized downstream velocity field, resulting in spatially heterogeneous and irregularly shaped velocity profiles. The results question the extent to which generalized velocity profiles can be quantified for morphologically complex plants. Incremental changes in plant orientation introduce gradual changes to the downstream velocity field and cause a substantial range in the quantified drag response. Form drag forces are up to an order of magnitude greater for foliated plants compared to defoliated plants, although the mean drag coefficient for defoliated plants is higher (1.52 defoliated; 1.03 foliated). Variation in the drag coefficients is greatest when the plant is defoliated (up to ∼210% variation when defoliated, ∼80% when foliated).","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"73 1","pages":"108 - 129"},"PeriodicalIF":4.6000,"publicationDate":"2018-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The importance of riparian plant orientation in river flow: implications for flow structures and drag\",\"authors\":\"R. Boothroyd, R. Hardy, J. Warburton, T. Marjoribanks\",\"doi\":\"10.1080/24705357.2019.1573648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In a series of high resolution numerical modelling experiments, we incorporated submerged riparian plants into a computational fluid dynamics (CFD) model used to predict flow structures and drag in river flow. Individual plant point clouds were captured using terrestrial laser scanning (TLS) and geometric characteristics quantified. In the first experiment, flow is modelled around three different plant specimens of the same species (Prunus laurocerasus). In the second experiment, the orientation of another specimen is incrementally rotated to modify the flow-facing structure when foliated and defoliated. Each plant introduces a unique disturbance pattern to the normalized downstream velocity field, resulting in spatially heterogeneous and irregularly shaped velocity profiles. The results question the extent to which generalized velocity profiles can be quantified for morphologically complex plants. Incremental changes in plant orientation introduce gradual changes to the downstream velocity field and cause a substantial range in the quantified drag response. Form drag forces are up to an order of magnitude greater for foliated plants compared to defoliated plants, although the mean drag coefficient for defoliated plants is higher (1.52 defoliated; 1.03 foliated). Variation in the drag coefficients is greatest when the plant is defoliated (up to ∼210% variation when defoliated, ∼80% when foliated).\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":\"73 1\",\"pages\":\"108 - 129\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2018-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2019.1573648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2019.1573648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

在一系列高分辨率的数值模拟实验中,我们将淹没河岸植物纳入计算流体动力学(CFD)模型,用于预测河流水流的流动结构和阻力。利用地面激光扫描(TLS)捕获单个植物点云,并对其几何特征进行量化。在第一个实验中,围绕同一物种的三种不同植物标本(Prunus laurocerasus)进行流动建模。在第二个实验中,另一个试样的取向被增量旋转,以改变在叶理和去叶理时的流动面结构。每个工厂引入一个独特的干扰模式归一化下游速度场,导致空间异质性和不规则形状的速度剖面。结果质疑广义速度剖面在多大程度上可以量化形态复杂的植物。植物方向的增量变化会导致下游速度场的逐渐变化,并导致量化阻力响应的较大范围。叶面植物的形成阻力比叶面植物大一个数量级,尽管叶面植物的平均阻力系数更高(1.52;1.03薄片状)。在植物脱叶时阻力系数的变化最大(脱叶时可达~ 210%,脱叶时可达~ 80%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The importance of riparian plant orientation in river flow: implications for flow structures and drag
Abstract In a series of high resolution numerical modelling experiments, we incorporated submerged riparian plants into a computational fluid dynamics (CFD) model used to predict flow structures and drag in river flow. Individual plant point clouds were captured using terrestrial laser scanning (TLS) and geometric characteristics quantified. In the first experiment, flow is modelled around three different plant specimens of the same species (Prunus laurocerasus). In the second experiment, the orientation of another specimen is incrementally rotated to modify the flow-facing structure when foliated and defoliated. Each plant introduces a unique disturbance pattern to the normalized downstream velocity field, resulting in spatially heterogeneous and irregularly shaped velocity profiles. The results question the extent to which generalized velocity profiles can be quantified for morphologically complex plants. Incremental changes in plant orientation introduce gradual changes to the downstream velocity field and cause a substantial range in the quantified drag response. Form drag forces are up to an order of magnitude greater for foliated plants compared to defoliated plants, although the mean drag coefficient for defoliated plants is higher (1.52 defoliated; 1.03 foliated). Variation in the drag coefficients is greatest when the plant is defoliated (up to ∼210% variation when defoliated, ∼80% when foliated).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信