基于决策规则的数据挖掘方法的应用

Xun Ge, J. Gong
{"title":"基于决策规则的数据挖掘方法的应用","authors":"Xun Ge, J. Gong","doi":"10.5281/ZENODO.1088350","DOIUrl":null,"url":null,"abstract":"Abstract —Rankings for output of Chinese main agricultural com-modity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008have been released in United Nations FAO Database. Unfortunately,where the ranking of output of Chinese cotton lint in the world for2008 was missed. This paper uses sequential data mining methodswith decision rules filling this gap. This new data mining methodwill be help to give a further improvement for United Nations FAODatabase. Keywords —Ranking, output of the main agricultural commodity,gross domestic product, decision table, information system; datamining, decision rule I. I NTRODUCTION Recently, Food and Agriculture Organization of the UnitedNations has released rankings for output of Chinese mainagricultural commodity in the world, i.e., the following datatable was given ([10]), where u 1 ,u 2 ,u 3 ,u 4 ,u 5 ,u 6 ,u 7 denote1978,1980,1990,2000,2006,2007,2008.T ABLE I:I NCOMPLETE D ATA T ABLE Item u 1 u 2 u 3 u 4 u 5 u 6 u 7 Cereals 2 1 1 1 1 1 1Meat 3 3 1 1 1 1 1Cotton Lint 3 2 1 1 1 1Soybeans 3 3 3 4 4 4 4Groundnuts in Shell 2 2 2 1 1 1 1Sugar Cane 7 9 4 3 3 3 3Tea 2 2 2 1 1 1 1Fruit 9 10 4 1 1 1 1The above data in Table 1 also appear in [1]. In Table1, numbers in the first row denote years and others denoterankings. Unfortunately, Table 1 is an incomplete Data table,which does not give the ranking for output of Chinese cottonlint in the world for 2008. Thus, the following question arisenaturally.","PeriodicalId":23764,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","volume":"24 1","pages":"928-931"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Application of the Data Mining Methods with Decision Rule\",\"authors\":\"Xun Ge, J. Gong\",\"doi\":\"10.5281/ZENODO.1088350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract —Rankings for output of Chinese main agricultural com-modity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008have been released in United Nations FAO Database. Unfortunately,where the ranking of output of Chinese cotton lint in the world for2008 was missed. This paper uses sequential data mining methodswith decision rules filling this gap. This new data mining methodwill be help to give a further improvement for United Nations FAODatabase. Keywords —Ranking, output of the main agricultural commodity,gross domestic product, decision table, information system; datamining, decision rule I. I NTRODUCTION Recently, Food and Agriculture Organization of the UnitedNations has released rankings for output of Chinese mainagricultural commodity in the world, i.e., the following datatable was given ([10]), where u 1 ,u 2 ,u 3 ,u 4 ,u 5 ,u 6 ,u 7 denote1978,1980,1990,2000,2006,2007,2008.T ABLE I:I NCOMPLETE D ATA T ABLE Item u 1 u 2 u 3 u 4 u 5 u 6 u 7 Cereals 2 1 1 1 1 1 1Meat 3 3 1 1 1 1 1Cotton Lint 3 2 1 1 1 1Soybeans 3 3 3 4 4 4 4Groundnuts in Shell 2 2 2 1 1 1 1Sugar Cane 7 9 4 3 3 3 3Tea 2 2 2 1 1 1 1Fruit 9 10 4 1 1 1 1The above data in Table 1 also appear in [1]. In Table1, numbers in the first row denote years and others denoterankings. Unfortunately, Table 1 is an incomplete Data table,which does not give the ranking for output of Chinese cottonlint in the world for 2008. Thus, the following question arisenaturally.\",\"PeriodicalId\":23764,\"journal\":{\"name\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"volume\":\"24 1\",\"pages\":\"928-931\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.1088350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.1088350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:联合国粮农组织数据库发布了1978年、1980年、1990年、2000年、2006年、2007年和2008年中国主要农产品产量世界排名。遗憾的是,2008年中国棉绒产量在世界上的排名被遗漏了。本文使用带有决策规则的顺序数据挖掘方法来填补这一空白。这种新的数据挖掘方法将有助于进一步改进联合国粮农组织数据库。关键词:排名,主要农产品产量,国内生产总值,决策表,信息系统;最近,联合国粮农组织公布了中国主要农产品产量在世界上的排名,即给出了如下数据表([10]),其中u 1、u 2、u 3、u 4、u 5、u 6、u 7分别代表1978年、1980年、1990年、2000年、2006年、2007年、2008年。T能我:我NCOMPLETE D ATA T u 1 u 2项3 u 4 u 5 6 7谷物2 1 1 1 1 1 1肉3 3 1 1 1 1 1皮棉3 2 1 1 1 1大豆3 3 3 4 4 4 4花生壳2 2 2 1 1 1 1甘蔗7 9 4 3 3 3 3茶2 2 2 1 1 1 1水果9 10 4 1 1 1 1上面的数据表1中还出现在[1]。在表1中,第一行的数字表示年份,其他表示排名。不幸的是,表1是一个不完整的数据表,它没有给出2008年中国棉花产量在世界上的排名。因此,下面的问题自然产生了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Application of the Data Mining Methods with Decision Rule
Abstract —Rankings for output of Chinese main agricultural com-modity in the world for 1978, 1980, 1990, 2000, 2006, 2007 and 2008have been released in United Nations FAO Database. Unfortunately,where the ranking of output of Chinese cotton lint in the world for2008 was missed. This paper uses sequential data mining methodswith decision rules filling this gap. This new data mining methodwill be help to give a further improvement for United Nations FAODatabase. Keywords —Ranking, output of the main agricultural commodity,gross domestic product, decision table, information system; datamining, decision rule I. I NTRODUCTION Recently, Food and Agriculture Organization of the UnitedNations has released rankings for output of Chinese mainagricultural commodity in the world, i.e., the following datatable was given ([10]), where u 1 ,u 2 ,u 3 ,u 4 ,u 5 ,u 6 ,u 7 denote1978,1980,1990,2000,2006,2007,2008.T ABLE I:I NCOMPLETE D ATA T ABLE Item u 1 u 2 u 3 u 4 u 5 u 6 u 7 Cereals 2 1 1 1 1 1 1Meat 3 3 1 1 1 1 1Cotton Lint 3 2 1 1 1 1Soybeans 3 3 3 4 4 4 4Groundnuts in Shell 2 2 2 1 1 1 1Sugar Cane 7 9 4 3 3 3 3Tea 2 2 2 1 1 1 1Fruit 9 10 4 1 1 1 1The above data in Table 1 also appear in [1]. In Table1, numbers in the first row denote years and others denoterankings. Unfortunately, Table 1 is an incomplete Data table,which does not give the ranking for output of Chinese cottonlint in the world for 2008. Thus, the following question arisenaturally.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信