基于深度学习的行人检测系统

IF 1.2 Q3 ENGINEERING, MULTIDISCIPLINARY
Mohammed Razzok, A. Badri, Ilham El Mourabit, Y. Ruichek, A. Sahel
{"title":"基于深度学习的行人检测系统","authors":"Mohammed Razzok, A. Badri, Ilham El Mourabit, Y. Ruichek, A. Sahel","doi":"10.11591/ijaas.v11.i3.pp194-198","DOIUrl":null,"url":null,"abstract":"Pedestrian detection is a rapidly growing field of computer vision with applications in smart cars, surveillance, automotive safety, and advanced robotics. Most of the success of the last few years has been driven by the rapid growth of deep learning, more efficient tools capable of learning semantic, high-level, deeper features of images are proposed. In this article, we investigated the task of pedestrian detection on roads using models based on convolutional neural networks. We compared the performance of standard state-of-the-art object detectors like Faster region-based convolutional network (R-CNN), single shot detector (SSD), and you only look once, version 3 (YOLOv3). Results show that YOLOv3 is the best object detection model than others for pedestrians in terms of detection and time prediction.","PeriodicalId":44367,"journal":{"name":"International Journal of Advances in Engineering Sciences and Applied Mathematics","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Pedestrian detection system based on deep learning\",\"authors\":\"Mohammed Razzok, A. Badri, Ilham El Mourabit, Y. Ruichek, A. Sahel\",\"doi\":\"10.11591/ijaas.v11.i3.pp194-198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pedestrian detection is a rapidly growing field of computer vision with applications in smart cars, surveillance, automotive safety, and advanced robotics. Most of the success of the last few years has been driven by the rapid growth of deep learning, more efficient tools capable of learning semantic, high-level, deeper features of images are proposed. In this article, we investigated the task of pedestrian detection on roads using models based on convolutional neural networks. We compared the performance of standard state-of-the-art object detectors like Faster region-based convolutional network (R-CNN), single shot detector (SSD), and you only look once, version 3 (YOLOv3). Results show that YOLOv3 is the best object detection model than others for pedestrians in terms of detection and time prediction.\",\"PeriodicalId\":44367,\"journal\":{\"name\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Engineering Sciences and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v11.i3.pp194-198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Engineering Sciences and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i3.pp194-198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

行人检测是一个快速发展的计算机视觉领域,在智能汽车、监控、汽车安全和先进机器人等领域都有应用。过去几年的大部分成功都是由深度学习的快速发展所推动的,人们提出了能够学习图像语义、高级、更深层次特征的更有效的工具。在本文中,我们研究了基于卷积神经网络模型的道路行人检测任务。我们比较了标准的最先进的目标检测器的性能,如更快的基于区域的卷积网络(R-CNN),单镜头检测器(SSD),你只看一次,版本3 (YOLOv3)。结果表明,YOLOv3在行人目标检测和时间预测方面优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pedestrian detection system based on deep learning
Pedestrian detection is a rapidly growing field of computer vision with applications in smart cars, surveillance, automotive safety, and advanced robotics. Most of the success of the last few years has been driven by the rapid growth of deep learning, more efficient tools capable of learning semantic, high-level, deeper features of images are proposed. In this article, we investigated the task of pedestrian detection on roads using models based on convolutional neural networks. We compared the performance of standard state-of-the-art object detectors like Faster region-based convolutional network (R-CNN), single shot detector (SSD), and you only look once, version 3 (YOLOv3). Results show that YOLOv3 is the best object detection model than others for pedestrians in terms of detection and time prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
期刊介绍: International Journal of Advances in Engineering Sciences and Applied Mathematics will be a thematic journal, where each issue will be dedicated to a specific area of engineering and applied mathematics. The journal will accept original articles and will also publish review article that summarize the state of the art and provide a perspective on areas of current research interest.Articles that contain purely theoretical results are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信