Td-VOS:跟踪驱动的单目标视频对象分割

Shaopan Xiong, Shengyang Li, Longxuan Kou, Weilong Guo, Zhuang Zhou, Zifei Zhao
{"title":"Td-VOS:跟踪驱动的单目标视频对象分割","authors":"Shaopan Xiong, Shengyang Li, Longxuan Kou, Weilong Guo, Zhuang Zhou, Zifei Zhao","doi":"10.1109/ICIVC50857.2020.9177471","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to single-object video object segmentation, only using the first-frame bounding box (without mask) to initialize. The proposed method is a tracking-driven single-object video object segmentation, which combines an effective Box2Segmentation module with a general object tracking module. Just initialize the first frame box, the Box2Segmentation module can obtain the segmentation results based on the predicted tracking bounding box. Evaluations on the single-object video object segmentation dataset DAVIS2016 show that the proposed method achieves a competitive performance with a Region Similarity score of 75.4% and a Contour Accuracy score of 73.1%, only under the settings of first-frame bounding box initialization. The proposed method outperforms SiamMask which is the most competitive method for video object segmentation under the same settings, with Region Similarity score by 5.2% and Contour Accuracy score by 7.8%. Compared with the semi-supervised VOS methods without online fine-tuning initialized by a first frame mask, the proposed method also achieves comparable results.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"51 1","pages":"102-107"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Td-VOS: Tracking-Driven Single-Object Video Object Segmentation\",\"authors\":\"Shaopan Xiong, Shengyang Li, Longxuan Kou, Weilong Guo, Zhuang Zhou, Zifei Zhao\",\"doi\":\"10.1109/ICIVC50857.2020.9177471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach to single-object video object segmentation, only using the first-frame bounding box (without mask) to initialize. The proposed method is a tracking-driven single-object video object segmentation, which combines an effective Box2Segmentation module with a general object tracking module. Just initialize the first frame box, the Box2Segmentation module can obtain the segmentation results based on the predicted tracking bounding box. Evaluations on the single-object video object segmentation dataset DAVIS2016 show that the proposed method achieves a competitive performance with a Region Similarity score of 75.4% and a Contour Accuracy score of 73.1%, only under the settings of first-frame bounding box initialization. The proposed method outperforms SiamMask which is the most competitive method for video object segmentation under the same settings, with Region Similarity score by 5.2% and Contour Accuracy score by 7.8%. Compared with the semi-supervised VOS methods without online fine-tuning initialized by a first frame mask, the proposed method also achieves comparable results.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"51 1\",\"pages\":\"102-107\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177471\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种单目标视频对象分割方法,仅使用第一帧边界框(无掩码)进行初始化。该方法是一种跟踪驱动的单目标视频目标分割方法,它将有效的box2分割模块与通用的目标跟踪模块相结合。只需初始化第一帧框,Box2Segmentation模块就可以根据预测的跟踪边界框得到分割结果。对单目标视频目标分割数据集DAVIS2016的评估表明,仅在第一帧边界框初始化设置下,该方法的区域相似度得分为75.4%,轮廓精度得分为73.1%,具有较强的竞争力。在相同设置下,该方法优于最具竞争力的视频目标分割方法SiamMask,区域相似度得分提高5.2%,轮廓精度得分提高7.8%。与未使用第一帧掩码初始化在线微调的半监督VOS方法相比,该方法也取得了相当的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Td-VOS: Tracking-Driven Single-Object Video Object Segmentation
This paper presents an approach to single-object video object segmentation, only using the first-frame bounding box (without mask) to initialize. The proposed method is a tracking-driven single-object video object segmentation, which combines an effective Box2Segmentation module with a general object tracking module. Just initialize the first frame box, the Box2Segmentation module can obtain the segmentation results based on the predicted tracking bounding box. Evaluations on the single-object video object segmentation dataset DAVIS2016 show that the proposed method achieves a competitive performance with a Region Similarity score of 75.4% and a Contour Accuracy score of 73.1%, only under the settings of first-frame bounding box initialization. The proposed method outperforms SiamMask which is the most competitive method for video object segmentation under the same settings, with Region Similarity score by 5.2% and Contour Accuracy score by 7.8%. Compared with the semi-supervised VOS methods without online fine-tuning initialized by a first frame mask, the proposed method also achieves comparable results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信