神经网络的紧致性

IF 1 Q1 MATHEMATICS
K. Miyajima, Hiroshi Yamazaki
{"title":"神经网络的紧致性","authors":"K. Miyajima, Hiroshi Yamazaki","doi":"10.2478/forma-2022-0002","DOIUrl":null,"url":null,"abstract":"Summary In this article, Feed-forward Neural Network is formalized in the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized using functional sequences. Next, we show that a set of functions generated by these neural networks satisfies equicontinuousness and equiboundedness property [10], [5]. At last, we formalized the compactness of the function set of these neural networks by using the Ascoli-Arzela’s theorem according to [4] and [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"63 1","pages":"13 - 21"},"PeriodicalIF":1.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compactness of Neural Networks\",\"authors\":\"K. Miyajima, Hiroshi Yamazaki\",\"doi\":\"10.2478/forma-2022-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary In this article, Feed-forward Neural Network is formalized in the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized using functional sequences. Next, we show that a set of functions generated by these neural networks satisfies equicontinuousness and equiboundedness property [10], [5]. At last, we formalized the compactness of the function set of these neural networks by using the Ascoli-Arzela’s theorem according to [4] and [3].\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":\"63 1\",\"pages\":\"13 - 21\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文将前馈神经网络形式化于Mizar系统[1],[2]。首先,使用函数序列形式化多层感知器[6],[7],[8]。接下来,我们证明了由这些神经网络生成的一组函数满足等连续性和等有界性[10],[5]。最后,根据[4]和[3],利用Ascoli-Arzela定理形式化了这些神经网络函数集的紧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compactness of Neural Networks
Summary In this article, Feed-forward Neural Network is formalized in the Mizar system [1], [2]. First, the multilayer perceptron [6], [7], [8] is formalized using functional sequences. Next, we show that a set of functions generated by these neural networks satisfies equicontinuousness and equiboundedness property [10], [5]. At last, we formalized the compactness of the function set of these neural networks by using the Ascoli-Arzela’s theorem according to [4] and [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信