求解办公空间分配问题的进化局部搜索

Özgür Ülker, Dario Landa Silva
{"title":"求解办公空间分配问题的进化局部搜索","authors":"Özgür Ülker, Dario Landa Silva","doi":"10.1109/CEC.2012.6253009","DOIUrl":null,"url":null,"abstract":"Office Space Allocation (OSA) is the task of correctly allocating the spatial resources of an institution to a set of entities by minimising the wastage of space and the violation of additional constraints. In this paper, an evolutionary local search algorithm is presented to tackle this problem. The evolutionary components of the algorithm include standard crossover and mutation operators and a relatively small population of individuals. The offspring produced by the evolutionary operators are subjected to a short but intense local search process. A very fast cost calculation method tailored for searching a large section of the search space is implemented. Extensive experimentation is carried out related to several parameters of the algorithm: the mutation rate, the population size, the length of the local search procedure after each mutation, hence the balance between the evolutionary and the local search stages, and the level of greediness of the local search process. The final results on 72 different data instances show that this hybrid evolutionary algorithm is very competitive with an integer programming model.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"2 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary local search for solving the office space allocation problem\",\"authors\":\"Özgür Ülker, Dario Landa Silva\",\"doi\":\"10.1109/CEC.2012.6253009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Office Space Allocation (OSA) is the task of correctly allocating the spatial resources of an institution to a set of entities by minimising the wastage of space and the violation of additional constraints. In this paper, an evolutionary local search algorithm is presented to tackle this problem. The evolutionary components of the algorithm include standard crossover and mutation operators and a relatively small population of individuals. The offspring produced by the evolutionary operators are subjected to a short but intense local search process. A very fast cost calculation method tailored for searching a large section of the search space is implemented. Extensive experimentation is carried out related to several parameters of the algorithm: the mutation rate, the population size, the length of the local search procedure after each mutation, hence the balance between the evolutionary and the local search stages, and the level of greediness of the local search process. The final results on 72 different data instances show that this hybrid evolutionary algorithm is very competitive with an integer programming model.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"2 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2012.6253009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2012.6253009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

办公空间分配(OSA)是通过最小化空间浪费和违反附加约束,将机构的空间资源正确分配给一组实体的任务。本文提出了一种进化局部搜索算法来解决这一问题。该算法的进化组成部分包括标准的交叉和变异算子以及相对较小的个体种群。进化算子产生的后代经过短暂而激烈的局部搜索过程。实现了一种适合于搜索大范围搜索空间的快速代价计算方法。对算法的几个参数:突变率、种群大小、每次突变后局部搜索过程的长度、进化和局部搜索阶段之间的平衡以及局部搜索过程的贪婪程度进行了大量的实验。在72个不同的数据实例上的最终结果表明,这种混合进化算法与整数规划模型具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary local search for solving the office space allocation problem
Office Space Allocation (OSA) is the task of correctly allocating the spatial resources of an institution to a set of entities by minimising the wastage of space and the violation of additional constraints. In this paper, an evolutionary local search algorithm is presented to tackle this problem. The evolutionary components of the algorithm include standard crossover and mutation operators and a relatively small population of individuals. The offspring produced by the evolutionary operators are subjected to a short but intense local search process. A very fast cost calculation method tailored for searching a large section of the search space is implemented. Extensive experimentation is carried out related to several parameters of the algorithm: the mutation rate, the population size, the length of the local search procedure after each mutation, hence the balance between the evolutionary and the local search stages, and the level of greediness of the local search process. The final results on 72 different data instances show that this hybrid evolutionary algorithm is very competitive with an integer programming model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信