基于GNSS测量和人工神经网络的电离层异常地震预警系统

Diego Brum, Graciela Racolte, F. Bordin, Eduardo Kediamosiko Nzinga, M. Veronez, E. Souza, I. É. Koch, L. G. D. Silveira, I. Klein, M. T. Matsuoka, V. F. Rofatto, A. M. Junior
{"title":"基于GNSS测量和人工神经网络的电离层异常地震预警系统","authors":"Diego Brum, Graciela Racolte, F. Bordin, Eduardo Kediamosiko Nzinga, M. Veronez, E. Souza, I. É. Koch, L. G. D. Silveira, I. Klein, M. T. Matsuoka, V. F. Rofatto, A. M. Junior","doi":"10.1109/IGARSS.2019.8900197","DOIUrl":null,"url":null,"abstract":"The Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) data processing has been used as a tool for monitoring earthquakes. The purpose of this study is to bring an alternative approach to the prediction of earthquakes and to determine their magnitudes based on Artificial Neural Networks (ANN) and ionospheric disturbances. For this, the Vertical Total Electron Content (VTEC) data from the National Oceanic and Atmosphere Administration (NOAA) were used to train the ANN. Results show that the ANN process achieved an accuracy of 85.71% in validation assessment to predict Tres Picos Mw=8.2 earthquake from 1:30 UTC to 04:00 UTC, approximately 3 hours before the seismic event. For magnitude classification, the ANN achieved an accuracy of 94.60%. The Matthews Correlation Coefficient (MCC) which takes into account all true/false positives and negatives was also evaluated and showed promising results.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"1 1","pages":"9295-9298"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Proposed Earthquake Warning System Based on Ionospheric Anomalies Derived From GNSS Measurements and Artificial Neural Networks\",\"authors\":\"Diego Brum, Graciela Racolte, F. Bordin, Eduardo Kediamosiko Nzinga, M. Veronez, E. Souza, I. É. Koch, L. G. D. Silveira, I. Klein, M. T. Matsuoka, V. F. Rofatto, A. M. Junior\",\"doi\":\"10.1109/IGARSS.2019.8900197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) data processing has been used as a tool for monitoring earthquakes. The purpose of this study is to bring an alternative approach to the prediction of earthquakes and to determine their magnitudes based on Artificial Neural Networks (ANN) and ionospheric disturbances. For this, the Vertical Total Electron Content (VTEC) data from the National Oceanic and Atmosphere Administration (NOAA) were used to train the ANN. Results show that the ANN process achieved an accuracy of 85.71% in validation assessment to predict Tres Picos Mw=8.2 earthquake from 1:30 UTC to 04:00 UTC, approximately 3 hours before the seismic event. For magnitude classification, the ANN achieved an accuracy of 94.60%. The Matthews Correlation Coefficient (MCC) which takes into account all true/false positives and negatives was also evaluated and showed promising results.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"1 1\",\"pages\":\"9295-9298\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8900197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从全球导航卫星系统(GNSS)数据处理中得到的总电子含量(TEC)已被用作监测地震的工具。本研究的目的是为地震预测和基于人工神经网络(ANN)和电离层扰动确定地震震级提供一种替代方法。为此,使用美国国家海洋和大气管理局(NOAA)的垂直总电子含量(VTEC)数据来训练人工神经网络。结果表明,人工神经网络对地震发生前约3小时1:30 ~ 04:00的Tres Picos Mw=8.2级地震的预测准确率达到85.71%。对于震级分类,人工神经网络的准确率达到了94.60%。考虑到所有真/假阳性和阴性的马修斯相关系数(MCC)也进行了评估,并显示出令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposed Earthquake Warning System Based on Ionospheric Anomalies Derived From GNSS Measurements and Artificial Neural Networks
The Total Electron Content (TEC) derived from Global Navigation Satellite System (GNSS) data processing has been used as a tool for monitoring earthquakes. The purpose of this study is to bring an alternative approach to the prediction of earthquakes and to determine their magnitudes based on Artificial Neural Networks (ANN) and ionospheric disturbances. For this, the Vertical Total Electron Content (VTEC) data from the National Oceanic and Atmosphere Administration (NOAA) were used to train the ANN. Results show that the ANN process achieved an accuracy of 85.71% in validation assessment to predict Tres Picos Mw=8.2 earthquake from 1:30 UTC to 04:00 UTC, approximately 3 hours before the seismic event. For magnitude classification, the ANN achieved an accuracy of 94.60%. The Matthews Correlation Coefficient (MCC) which takes into account all true/false positives and negatives was also evaluated and showed promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信