用惩罚似然法构造不规则直方图

Y. Rozenholc, Thoralf Mildenberger, U. Gather
{"title":"用惩罚似然法构造不规则直方图","authors":"Y. Rozenholc, Thoralf Mildenberger, U. Gather","doi":"10.17877/DE290R-587","DOIUrl":null,"url":null,"abstract":"We propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [6] and Massart [26]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2009-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Constructing irregular histograms by penalized likelihood\",\"authors\":\"Y. Rozenholc, Thoralf Mildenberger, U. Gather\",\"doi\":\"10.17877/DE290R-587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [6] and Massart [26]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种完全自动化的不规则直方图构造方法。对于给定数量的箱子,已知最大似然直方图是动态规划算法的结果。为了选择箱子的数量,我们提出了两种不同的惩罚,这是由Castellan[6]和Massart[26]最近在模型选择方面的工作所激发的。我们给出了一个完整的算法描述和适当的调整惩罚。最后,我们将我们的程序与其他现有的建议进行了比较,以适应不同密度和样本量的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing irregular histograms by penalized likelihood
We propose a fully automatic procedure for the construction of irregular histograms. For a given number of bins, the maximum likelihood histogram is known to be the result of a dynamic programming algorithm. To choose the number of bins, we propose two different penalties motivated by recent work in model selection by Castellan [6] and Massart [26]. We give a complete description of the algorithm and a proper tuning of the penalties. Finally, we compare our procedure to other existing proposals for a wide range of different densities and sample sizes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信