从炉内图像和过程数据学习垃圾焚烧厂的深度动态模型

T. Kaneko, Yoshihisa Tsurumine, James Poon, Y. Onuki, Yingda Dai, Kaoru Kawabata, Takamitsu Matsubara
{"title":"从炉内图像和过程数据学习垃圾焚烧厂的深度动态模型","authors":"T. Kaneko, Yoshihisa Tsurumine, James Poon, Y. Onuki, Yingda Dai, Kaoru Kawabata, Takamitsu Matsubara","doi":"10.1109/COASE.2019.8842972","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for predicting in-furnace images and sensor signal readings for a waste incineration plant, utilizing a deep dynamical model based on Kalman Variational Auto-Encoders that considers a range of process signals, control inputs, and time-series sequences of infurnace image data. This is motivated by the need for automatic control systems to be able to anticipate abnormalities in incoming waste to prevent potential instabilities during and after combustion. Experimental results with real plant data show that the proposed strategy provides an improved prediction accuracy for both process signals and in-furnace images compared to a Long Short-Term Memory neural network.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"44 1","pages":"873-878"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Learning Deep Dynamical Models of a Waste Incineration Plant from In-furnace Images and Process Data\",\"authors\":\"T. Kaneko, Yoshihisa Tsurumine, James Poon, Y. Onuki, Yingda Dai, Kaoru Kawabata, Takamitsu Matsubara\",\"doi\":\"10.1109/COASE.2019.8842972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for predicting in-furnace images and sensor signal readings for a waste incineration plant, utilizing a deep dynamical model based on Kalman Variational Auto-Encoders that considers a range of process signals, control inputs, and time-series sequences of infurnace image data. This is motivated by the need for automatic control systems to be able to anticipate abnormalities in incoming waste to prevent potential instabilities during and after combustion. Experimental results with real plant data show that the proposed strategy provides an improved prediction accuracy for both process signals and in-furnace images compared to a Long Short-Term Memory neural network.\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"44 1\",\"pages\":\"873-878\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8842972\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8842972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种预测垃圾焚烧厂炉内图像和传感器信号读数的方法,利用基于卡尔曼变分自编码器的深度动态模型,该模型考虑了一系列过程信号、控制输入和炉内图像数据的时间序列序列。这是由于需要自动控制系统能够预测进入废物的异常情况,以防止燃烧期间和燃烧后的潜在不稳定。实验结果表明,与长短期记忆神经网络相比,该方法对过程信号和炉内图像的预测精度都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Deep Dynamical Models of a Waste Incineration Plant from In-furnace Images and Process Data
This paper presents an approach for predicting in-furnace images and sensor signal readings for a waste incineration plant, utilizing a deep dynamical model based on Kalman Variational Auto-Encoders that considers a range of process signals, control inputs, and time-series sequences of infurnace image data. This is motivated by the need for automatic control systems to be able to anticipate abnormalities in incoming waste to prevent potential instabilities during and after combustion. Experimental results with real plant data show that the proposed strategy provides an improved prediction accuracy for both process signals and in-furnace images compared to a Long Short-Term Memory neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信