基于温度相关原理,利用磁阻产生脉动对液态金属冷却剂进行流量测量

A. Mamykin, R. Khalilov, E. Golbraikh, I. Kolesnichenko
{"title":"基于温度相关原理,利用磁阻产生脉动对液态金属冷却剂进行流量测量","authors":"A. Mamykin, R. Khalilov, E. Golbraikh, I. Kolesnichenko","doi":"10.17804/2410-9908.2023.3.017-028","DOIUrl":null,"url":null,"abstract":"A promising method for determining the flow rate of a liquid metal coolant is the temperature correlation method (TCM) since it does not require calibration. However, being indirect, it has a number of limitations to be carefully studied. A magnetic obstacle is used as a temperature pulsation generator. The paper presents the results of a numerical study on the influence of the size of a magnetic obstacle and its activity ratio, as well as effect of the temperature difference between the liquid metal and the environment, on the performance and accuracy of the TCM. The main criteria influencing the operation of the method are identified, namely the extent and spatial position of the vorticity and mixing zones.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Based on the temperature correlation principle, the use of a magnetic obstacle to generate pulsations in the flow measurement of a liquid metal coolant\",\"authors\":\"A. Mamykin, R. Khalilov, E. Golbraikh, I. Kolesnichenko\",\"doi\":\"10.17804/2410-9908.2023.3.017-028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising method for determining the flow rate of a liquid metal coolant is the temperature correlation method (TCM) since it does not require calibration. However, being indirect, it has a number of limitations to be carefully studied. A magnetic obstacle is used as a temperature pulsation generator. The paper presents the results of a numerical study on the influence of the size of a magnetic obstacle and its activity ratio, as well as effect of the temperature difference between the liquid metal and the environment, on the performance and accuracy of the TCM. The main criteria influencing the operation of the method are identified, namely the extent and spatial position of the vorticity and mixing zones.\",\"PeriodicalId\":11165,\"journal\":{\"name\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostics, Resource and Mechanics of materials and structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17804/2410-9908.2023.3.017-028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostics, Resource and Mechanics of materials and structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17804/2410-9908.2023.3.017-028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温度相关法(TCM)是一种很有前途的测定液态金属冷却剂流量的方法,因为它不需要校准。然而,由于它是间接的,它有一些局限性,需要仔细研究。利用磁性障碍物作为温度脉动发生器。本文介绍了磁阻尺寸及其活度比的影响,以及液态金属与环境温差对磁阻器性能和精度影响的数值研究结果。确定了影响该方法运行的主要判据,即涡度区和混合区的范围和空间位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Based on the temperature correlation principle, the use of a magnetic obstacle to generate pulsations in the flow measurement of a liquid metal coolant
A promising method for determining the flow rate of a liquid metal coolant is the temperature correlation method (TCM) since it does not require calibration. However, being indirect, it has a number of limitations to be carefully studied. A magnetic obstacle is used as a temperature pulsation generator. The paper presents the results of a numerical study on the influence of the size of a magnetic obstacle and its activity ratio, as well as effect of the temperature difference between the liquid metal and the environment, on the performance and accuracy of the TCM. The main criteria influencing the operation of the method are identified, namely the extent and spatial position of the vorticity and mixing zones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信