序列比对和活动识别的等渗CCA

Shahriar Shariat, V. Pavlovic
{"title":"序列比对和活动识别的等渗CCA","authors":"Shahriar Shariat, V. Pavlovic","doi":"10.1109/ICCV.2011.6126545","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for sequence alignment based on canonical correlation analysis(CCA). We show that a novel set of constraints imposed on traditional CCA leads to canonical solutions with the time warping property, i.e., non-decreasing monotonicity in time. This formulation generalizes the more traditional dynamic time warping (DTW) solutions to cases where the alignment is accomplished on arbitrary subsequence segments, optimally determined from data, instead on individual sequence samples. We then introduce a robust and efficient algorithm to find such alignments using non-negative least squares reductions. Experimental results show that this new method, when applied to MOCAP activity recognition problems, can yield improved recognition accuracy.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Isotonic CCA for sequence alignment and activity recognition\",\"authors\":\"Shahriar Shariat, V. Pavlovic\",\"doi\":\"10.1109/ICCV.2011.6126545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an approach for sequence alignment based on canonical correlation analysis(CCA). We show that a novel set of constraints imposed on traditional CCA leads to canonical solutions with the time warping property, i.e., non-decreasing monotonicity in time. This formulation generalizes the more traditional dynamic time warping (DTW) solutions to cases where the alignment is accomplished on arbitrary subsequence segments, optimally determined from data, instead on individual sequence samples. We then introduce a robust and efficient algorithm to find such alignments using non-negative least squares reductions. Experimental results show that this new method, when applied to MOCAP activity recognition problems, can yield improved recognition accuracy.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

提出了一种基于典型相关分析(CCA)的序列比对方法。我们证明了在传统CCA上施加的一组新的约束导致正则解具有时间翘曲性质,即时间上的非减少单调性。该公式将更传统的动态时间翘曲(DTW)解决方案推广到在任意子序列段上完成对齐的情况,从数据中最佳地确定,而不是在单个序列样本上。然后,我们引入了一种鲁棒且高效的算法,使用非负最小二乘约简来找到这样的对齐。实验结果表明,将该方法应用于MOCAP动作识别问题,可以提高识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isotonic CCA for sequence alignment and activity recognition
This paper presents an approach for sequence alignment based on canonical correlation analysis(CCA). We show that a novel set of constraints imposed on traditional CCA leads to canonical solutions with the time warping property, i.e., non-decreasing monotonicity in time. This formulation generalizes the more traditional dynamic time warping (DTW) solutions to cases where the alignment is accomplished on arbitrary subsequence segments, optimally determined from data, instead on individual sequence samples. We then introduce a robust and efficient algorithm to find such alignments using non-negative least squares reductions. Experimental results show that this new method, when applied to MOCAP activity recognition problems, can yield improved recognition accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信