一类混合广义Sylvester矩阵方程

He, Zhuo-heng, Wang, Qing-wen
{"title":"一类混合广义Sylvester矩阵方程","authors":"He, Zhuo-heng, Wang, Qing-wen","doi":"10.3969/J.ISSN.1007-2861.2014.01.021","DOIUrl":null,"url":null,"abstract":"In this paper,some necessary and sufficient solvability conditions for the system of mixed generalized Sylvester matrix equations A_1X-YB_1=C_1,A_2Y-ZB_2 = C_2 are derived,and an expression of the general solution to this system is given when it is solvable.Admissible ranks of the solution,and admissible ranks and inertias of the Hermitian part of the solution are investigated,respectively.As an application of the above system,solvability conditions and the general Hermitian solution to the generalized Sylvester matrix equation are obtained.Moreover,we provide an algorithm and an example to illustrate our results.","PeriodicalId":16995,"journal":{"name":"Journal of Shanghai University","volume":"72 1","pages":"138-156"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A Pair of Mixed Generalized Sylvester Matrix Equations\",\"authors\":\"He, Zhuo-heng, Wang, Qing-wen\",\"doi\":\"10.3969/J.ISSN.1007-2861.2014.01.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper,some necessary and sufficient solvability conditions for the system of mixed generalized Sylvester matrix equations A_1X-YB_1=C_1,A_2Y-ZB_2 = C_2 are derived,and an expression of the general solution to this system is given when it is solvable.Admissible ranks of the solution,and admissible ranks and inertias of the Hermitian part of the solution are investigated,respectively.As an application of the above system,solvability conditions and the general Hermitian solution to the generalized Sylvester matrix equation are obtained.Moreover,we provide an algorithm and an example to illustrate our results.\",\"PeriodicalId\":16995,\"journal\":{\"name\":\"Journal of Shanghai University\",\"volume\":\"72 1\",\"pages\":\"138-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Shanghai University\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3969/J.ISSN.1007-2861.2014.01.021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Shanghai University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3969/J.ISSN.1007-2861.2014.01.021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文导出了一类混合广义Sylvester矩阵方程组A_1X-YB_1=C_1,A_2Y-ZB_2 = C_2的可解性的充分必要条件,并给出了该方程组可解时的通解表达式。分别研究了解的可容许阶数和解的厄米部分的可容许阶数和惯量。作为上述系统的应用,得到了广义Sylvester矩阵方程的可解条件和一般厄米特解。此外,我们还提供了一个算法和一个例子来说明我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Pair of Mixed Generalized Sylvester Matrix Equations
In this paper,some necessary and sufficient solvability conditions for the system of mixed generalized Sylvester matrix equations A_1X-YB_1=C_1,A_2Y-ZB_2 = C_2 are derived,and an expression of the general solution to this system is given when it is solvable.Admissible ranks of the solution,and admissible ranks and inertias of the Hermitian part of the solution are investigated,respectively.As an application of the above system,solvability conditions and the general Hermitian solution to the generalized Sylvester matrix equation are obtained.Moreover,we provide an algorithm and an example to illustrate our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信