压缩驱动的天体物理回旋动力学湍流中的离子与电子加热

Y. Kawazura, A. Schekochihin, M. Barnes, J. TenBarge, Y. Tong, K. Klein, W. Dorland
{"title":"压缩驱动的天体物理回旋动力学湍流中的离子与电子加热","authors":"Y. Kawazura, A. Schekochihin, M. Barnes, J. TenBarge, Y. Tong, K. Klein, W. Dorland","doi":"10.1103/physrevx.10.041050","DOIUrl":null,"url":null,"abstract":"The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_{\\text{i}}/Q_{\\text{e}}$ as a function of the compressive-to-Alfvenic driving power ratio $P_{\\text{compr}}/P_{\\text{AW}}$, of the ratio of ion thermal pressure to magnetic pressure $\\beta_{\\text{i}}$, and of the ratio of ion-to-electron background temperatures $T_{\\text{i}}/T_{\\text{e}}$. It is shown that $Q_{\\text{i}}/Q_{\\text{e}}$ is an increasing function of $P_{\\text{compr}}/P_{\\text{AW}}$. When the compressive driving is sufficiently large, $Q_{\\text{i}}/Q_{\\text{e}}$ approaches $\\simeq P_{\\text{compr}}/P_{\\text{AW}}$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfven waves is absent for both low and high $\\beta_{\\text{i}}$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $\\beta_{\\text{i}}$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.","PeriodicalId":8461,"journal":{"name":"arXiv: Plasma Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Ion versus Electron Heating in Compressively Driven Astrophysical Gyrokinetic Turbulence\",\"authors\":\"Y. Kawazura, A. Schekochihin, M. Barnes, J. TenBarge, Y. Tong, K. Klein, W. Dorland\",\"doi\":\"10.1103/physrevx.10.041050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_{\\\\text{i}}/Q_{\\\\text{e}}$ as a function of the compressive-to-Alfvenic driving power ratio $P_{\\\\text{compr}}/P_{\\\\text{AW}}$, of the ratio of ion thermal pressure to magnetic pressure $\\\\beta_{\\\\text{i}}$, and of the ratio of ion-to-electron background temperatures $T_{\\\\text{i}}/T_{\\\\text{e}}$. It is shown that $Q_{\\\\text{i}}/Q_{\\\\text{e}}$ is an increasing function of $P_{\\\\text{compr}}/P_{\\\\text{AW}}$. When the compressive driving is sufficiently large, $Q_{\\\\text{i}}/Q_{\\\\text{e}}$ approaches $\\\\simeq P_{\\\\text{compr}}/P_{\\\\text{AW}}$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfven waves is absent for both low and high $\\\\beta_{\\\\text{i}}$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $\\\\beta_{\\\\text{i}}$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.\",\"PeriodicalId\":8461,\"journal\":{\"name\":\"arXiv: Plasma Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Plasma Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevx.10.041050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevx.10.041050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

采用非线性陀螺动力学模拟方法研究了压缩驱动(亚音速)无碰撞湍流中离子和电子之间不可逆加热的分配。我们推导出离子与电子加热比$Q_{\text{i}}/Q_{\text{e}}$的公式,它是压缩与阿尔夫尼驱动功率比$P_{\text{compr}}/P_{\text{AW}}$、离子热压与磁压之比$\beta_{\text{i}}$和离子与电子背景温度之比$T_{\text{i}}/T_{\text{e}}$的函数。结果表明,$Q_{\text{i}}/Q_{\text{e}}$是$P_{\text{compr}}/P_{\text{AW}}$的递增函数。当压缩驱动足够大时,$Q_{\text{i}}/Q_{\text{e}}$趋于$\simeq P_{\text{compr}}/P_{\text{AW}}$。这表明,在压缩波动较大的湍流中,加热的分配是在注入尺度上而不是在动力学尺度上决定的。相空间谱分析表明,在低、高水平$\beta_{\text{i}}$均不存在从惯性范围的压缩波动向亚larmorer尺度的动力学Alfven波的能量传递,这意味着压缩驱动与离子熵波动直接相关,并将其转化为离子热能。这一结果表明,优先电子加热是非常特殊的情况,需要低$\beta_{\text{i}}$和无或弱压缩驱动。我们的加热处方有广泛的应用,包括太阳风和热吸积盘,如M87和Sgr A*。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ion versus Electron Heating in Compressively Driven Astrophysical Gyrokinetic Turbulence
The partition of irreversible heating between ions and electrons in compressively driven (but subsonic) collisionless turbulence is investigated by means of nonlinear gyrokinetic simulations. We derive a prescription for the ion-to-electron heating ratio $Q_{\text{i}}/Q_{\text{e}}$ as a function of the compressive-to-Alfvenic driving power ratio $P_{\text{compr}}/P_{\text{AW}}$, of the ratio of ion thermal pressure to magnetic pressure $\beta_{\text{i}}$, and of the ratio of ion-to-electron background temperatures $T_{\text{i}}/T_{\text{e}}$. It is shown that $Q_{\text{i}}/Q_{\text{e}}$ is an increasing function of $P_{\text{compr}}/P_{\text{AW}}$. When the compressive driving is sufficiently large, $Q_{\text{i}}/Q_{\text{e}}$ approaches $\simeq P_{\text{compr}}/P_{\text{AW}}$. This indicates that, in turbulence with large compressive fluctuations, the partition of heating is decided at the injection scales, rather than at kinetic scales. Analysis of phase-space spectra shows that the energy transfer from inertial-range compressive fluctuations to sub-Larmor-scale kinetic Alfven waves is absent for both low and high $\beta_{\text{i}}$, meaning that the compressive driving is directly connected to the ion entropy fluctuations, which are converted into ion thermal energy. This result suggests that preferential electron heating is a very special case requiring low $\beta_{\text{i}}$ and no, or weak, compressive driving. Our heating prescription has wide-ranging applications, including to the solar wind and to hot accretion disks such as M87 and Sgr A*.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信