Fraser G Ferens, V. Spicer, O. Krokhin, A. Motnenko, W. Summers, D. A. Court
{"title":"缺失变体部分补充了粗神经孢子虫的少孔菌株。","authors":"Fraser G Ferens, V. Spicer, O. Krokhin, A. Motnenko, W. Summers, D. A. Court","doi":"10.1139/bcb-2016-0166","DOIUrl":null,"url":null,"abstract":"Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238-242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"13 1","pages":"318-327"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A deletion variant partially complements a porin-less strain of Neurospora crassa.\",\"authors\":\"Fraser G Ferens, V. Spicer, O. Krokhin, A. Motnenko, W. Summers, D. A. Court\",\"doi\":\"10.1139/bcb-2016-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238-242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"13 1\",\"pages\":\"318-327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2016-0166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2016-0166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A deletion variant partially complements a porin-less strain of Neurospora crassa.
Mitochondrial porin, the voltage-dependent anion channel, plays an important role in metabolism and other cellular functions within eukaryotic cells. To further the understanding of porin structure and function, Neurospora crassa wild-type porin was replaced with a deletion variant lacking residues 238-242 (238porin). 238porin was assembled in the mitochondrial outer membrane, but the steady state levels were only about 3% of those of the wild-type protein. The strain harbouring 238porin displayed cytochrome deficiencies and expressed alternative oxidase. Nonetheless, it exhibited an almost normal linear growth rate. Analysis of mitochondrial proteomes from a wild-type strain FGSC9718, a strain lacking porin (ΔPor-1), and one expressing only 238porin, revealed that the major differences between the variant strains were in the levels of subunits of the NADH:ubiquinone oxidoreductase (complex I) of the electron transport chain, which were reduced only in the ΔPor-1 strain. These, and other proteins related to electron flow and mitochondrial biogenesis, are differentially affected by relative porin levels.