用特殊因数分解奇数的快速方法

IF 0.3 Q4 MATHEMATICS
Xingbo Wang, Junjian Zhong
{"title":"用特殊因数分解奇数的快速方法","authors":"Xingbo Wang, Junjian Zhong","doi":"10.3844/JMSSP.2020.24.34","DOIUrl":null,"url":null,"abstract":"The paper proves that an odd composite integer N can be factorized in O((log2N)4) bit operations if N = pq, the divisor q is of the form 2αu +1 or 2αu-1 with u being an odd integer and α being a positive integer and the other divisor p satisfies 1 < p ≤ 2α+1 or 2α +1 < p ≤ 2α+1-1. Theorems and corollaries are proved with detail mathematical reasoning. Algorithm to factorize the odd composite integers is designed and tested in Maple. The results in the paper demonstrate that fast factorization of odd integers is possible with the help of valuated binary tree.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"85 1","pages":"24-34"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fast Approach to Factorize Odd Integers with Special Divisors\",\"authors\":\"Xingbo Wang, Junjian Zhong\",\"doi\":\"10.3844/JMSSP.2020.24.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proves that an odd composite integer N can be factorized in O((log2N)4) bit operations if N = pq, the divisor q is of the form 2αu +1 or 2αu-1 with u being an odd integer and α being a positive integer and the other divisor p satisfies 1 < p ≤ 2α+1 or 2α +1 < p ≤ 2α+1-1. Theorems and corollaries are proved with detail mathematical reasoning. Algorithm to factorize the odd composite integers is designed and tested in Maple. The results in the paper demonstrate that fast factorization of odd integers is possible with the help of valuated binary tree.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"85 1\",\"pages\":\"24-34\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2020-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2020.24.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2020.24.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

证明了奇数复合整数N可以在O((log2N)4)位运算中分解,如果N = pq,其除数q的形式为2αu +1或2αu-1,其中u为奇数,α为正整数,另一个除数p满足1 < p≤2α+1或2α+1 < p≤2α+1-1。用详细的数学推理证明了定理和推论。在Maple中设计并测试了奇组合整数的因式分解算法。本文的结果证明了利用赋值二叉树对奇数进行快速分解是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Approach to Factorize Odd Integers with Special Divisors
The paper proves that an odd composite integer N can be factorized in O((log2N)4) bit operations if N = pq, the divisor q is of the form 2αu +1 or 2αu-1 with u being an odd integer and α being a positive integer and the other divisor p satisfies 1 < p ≤ 2α+1 or 2α +1 < p ≤ 2α+1-1. Theorems and corollaries are proved with detail mathematical reasoning. Algorithm to factorize the odd composite integers is designed and tested in Maple. The results in the paper demonstrate that fast factorization of odd integers is possible with the help of valuated binary tree.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信