控制非厄米时间反转对称Floquet梯的拓扑输运方向

Bastian Hockendorf, A. Alvermann, H. Fehske
{"title":"控制非厄米时间反转对称Floquet梯的拓扑输运方向","authors":"Bastian Hockendorf, A. Alvermann, H. Fehske","doi":"10.1063/5.0036494","DOIUrl":null,"url":null,"abstract":"We propose a one-dimensional Floquet ladder that possesses two distinct topological transport channels with opposite directionality. The transport channels occur due to a $\\mathbb Z_2$ non-Hermitian Floquet topological phase that is protected by time-reversal symmetry. The signatures of this phase are two pairs of Kramers degenerate Floquet quasienergy bands that are separated by an imaginary gap. We discuss how the Floquet ladder can be implemented in a photonic waveguide lattice and show that the direction of transport in the resulting waveguide structure can be externally controlled by focusing two light beams into adjacent waveguides. The relative phase between the two light beams selects which of the two transport channels is predominantly populated, while the angles of incidence of the two light beams determine which of the transport channels is suppressed by non-Hermitian losses. We identify the optimal lattice parameters for the external control of transport and demonstrate the robustness of this mechanism against disorder.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Controlling the direction of topological transport in a non-Hermitian time-reversal symmetric Floquet ladder\",\"authors\":\"Bastian Hockendorf, A. Alvermann, H. Fehske\",\"doi\":\"10.1063/5.0036494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a one-dimensional Floquet ladder that possesses two distinct topological transport channels with opposite directionality. The transport channels occur due to a $\\\\mathbb Z_2$ non-Hermitian Floquet topological phase that is protected by time-reversal symmetry. The signatures of this phase are two pairs of Kramers degenerate Floquet quasienergy bands that are separated by an imaginary gap. We discuss how the Floquet ladder can be implemented in a photonic waveguide lattice and show that the direction of transport in the resulting waveguide structure can be externally controlled by focusing two light beams into adjacent waveguides. The relative phase between the two light beams selects which of the two transport channels is predominantly populated, while the angles of incidence of the two light beams determine which of the transport channels is suppressed by non-Hermitian losses. We identify the optimal lattice parameters for the external control of transport and demonstrate the robustness of this mechanism against disorder.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0036494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0036494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种一维Floquet阶梯,它具有两个不同的拓扑传输通道,具有相反的方向性。传输通道的产生是由于一个受时间反转对称性保护的非厄米Floquet拓扑相。这个相位的特征是两对Kramers简并Floquet准能带,它们被一个假想的间隙分隔开。我们讨论了如何在光子波导晶格中实现Floquet阶梯,并表明由此产生的波导结构中的输运方向可以通过将两个光束聚焦到相邻的波导中来进行外部控制。两束光之间的相对相位决定了哪个输运通道占主导地位,而两束光的入射角决定了哪个输运通道被非厄米损失抑制。我们确定了输运外部控制的最佳晶格参数,并证明了该机制对无序的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlling the direction of topological transport in a non-Hermitian time-reversal symmetric Floquet ladder
We propose a one-dimensional Floquet ladder that possesses two distinct topological transport channels with opposite directionality. The transport channels occur due to a $\mathbb Z_2$ non-Hermitian Floquet topological phase that is protected by time-reversal symmetry. The signatures of this phase are two pairs of Kramers degenerate Floquet quasienergy bands that are separated by an imaginary gap. We discuss how the Floquet ladder can be implemented in a photonic waveguide lattice and show that the direction of transport in the resulting waveguide structure can be externally controlled by focusing two light beams into adjacent waveguides. The relative phase between the two light beams selects which of the two transport channels is predominantly populated, while the angles of incidence of the two light beams determine which of the transport channels is suppressed by non-Hermitian losses. We identify the optimal lattice parameters for the external control of transport and demonstrate the robustness of this mechanism against disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信