基于离散小波变换和人工神经网络的心电信号睡眠呼吸暂停检测

Mahmmud Qatmh, T. Bonny, F. Barneih, O. Alshaltone, N. Nasir, M. Al-Shabi, Ahmed Al-Shammaa
{"title":"基于离散小波变换和人工神经网络的心电信号睡眠呼吸暂停检测","authors":"Mahmmud Qatmh, T. Bonny, F. Barneih, O. Alshaltone, N. Nasir, M. Al-Shabi, Ahmed Al-Shammaa","doi":"10.1109/ASET53988.2022.9735064","DOIUrl":null,"url":null,"abstract":"Sleep apnea is a sleep disorder that can cause serious health problems. An Artificial Neural Network classifier to detect sleep apnea has been presented in this paper by utilizing the ECG signals. Moreover, the discrete wavelet transform is used to decompose the ECG signal and use the first decomposition for feature extraction; the extracted features were used to train the Artificial Neural Network for pattern detection using MATLAB tools. Also, the data-sets used contains both Apnea pat1ients and healthy volunteers’ ECG signals. The results achieve 92.3% accuracy in the testing records.","PeriodicalId":6832,"journal":{"name":"2022 Advances in Science and Engineering Technology International Conferences (ASET)","volume":"18 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Sleep Apnea Detection Based on ECG Signals Using Discrete Wavelet Transform and Artificial Neural Network\",\"authors\":\"Mahmmud Qatmh, T. Bonny, F. Barneih, O. Alshaltone, N. Nasir, M. Al-Shabi, Ahmed Al-Shammaa\",\"doi\":\"10.1109/ASET53988.2022.9735064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep apnea is a sleep disorder that can cause serious health problems. An Artificial Neural Network classifier to detect sleep apnea has been presented in this paper by utilizing the ECG signals. Moreover, the discrete wavelet transform is used to decompose the ECG signal and use the first decomposition for feature extraction; the extracted features were used to train the Artificial Neural Network for pattern detection using MATLAB tools. Also, the data-sets used contains both Apnea pat1ients and healthy volunteers’ ECG signals. The results achieve 92.3% accuracy in the testing records.\",\"PeriodicalId\":6832,\"journal\":{\"name\":\"2022 Advances in Science and Engineering Technology International Conferences (ASET)\",\"volume\":\"18 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Advances in Science and Engineering Technology International Conferences (ASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASET53988.2022.9735064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Advances in Science and Engineering Technology International Conferences (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASET53988.2022.9735064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

睡眠呼吸暂停是一种睡眠障碍,会导致严重的健康问题。本文提出了一种利用心电信号检测睡眠呼吸暂停的人工神经网络分类器。采用离散小波变换对心电信号进行分解,利用一阶分解进行特征提取;利用MATLAB工具训练人工神经网络进行模式检测。此外,使用的数据集同时包含呼吸暂停患者和健康志愿者的心电图信号。结果在检测记录中准确率达到92.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sleep Apnea Detection Based on ECG Signals Using Discrete Wavelet Transform and Artificial Neural Network
Sleep apnea is a sleep disorder that can cause serious health problems. An Artificial Neural Network classifier to detect sleep apnea has been presented in this paper by utilizing the ECG signals. Moreover, the discrete wavelet transform is used to decompose the ECG signal and use the first decomposition for feature extraction; the extracted features were used to train the Artificial Neural Network for pattern detection using MATLAB tools. Also, the data-sets used contains both Apnea pat1ients and healthy volunteers’ ECG signals. The results achieve 92.3% accuracy in the testing records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信