等价尺度的非参数部分辨识估计量

C. Dudel
{"title":"等价尺度的非参数部分辨识估计量","authors":"C. Dudel","doi":"10.2139/ssrn.2566241","DOIUrl":null,"url":null,"abstract":"Methods for estimating equivalence scales usually rely on rather strong identifying assumptions. This paper considers a partially identified estimator for equivalence scales derived from the potential outcomes framework and using nonparametric methods for estimation, which requires only mild assumptions. Instead of point estimates, the method yields only lower and upper bounds of equivalence scales. Results of an analysis using German expenditure data show that the range implied by these bounds is rather wide, but can be reduced using additional covariates.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Nonparametric Partially Identified Estimator for Equivalence Scales\",\"authors\":\"C. Dudel\",\"doi\":\"10.2139/ssrn.2566241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods for estimating equivalence scales usually rely on rather strong identifying assumptions. This paper considers a partially identified estimator for equivalence scales derived from the potential outcomes framework and using nonparametric methods for estimation, which requires only mild assumptions. Instead of point estimates, the method yields only lower and upper bounds of equivalence scales. Results of an analysis using German expenditure data show that the range implied by these bounds is rather wide, but can be reduced using additional covariates.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2566241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2566241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

估计等效尺度的方法通常依赖于相当强的识别假设。本文考虑了从潜在结果框架出发的等价尺度的部分辨识估计量,并使用非参数方法进行估计,只需要轻微的假设。该方法只得到等价尺度的下界和上界,而不需要点估计。使用德国支出数据的分析结果表明,这些界限所隐含的范围相当宽,但可以使用额外的协变量来缩小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Nonparametric Partially Identified Estimator for Equivalence Scales
Methods for estimating equivalence scales usually rely on rather strong identifying assumptions. This paper considers a partially identified estimator for equivalence scales derived from the potential outcomes framework and using nonparametric methods for estimation, which requires only mild assumptions. Instead of point estimates, the method yields only lower and upper bounds of equivalence scales. Results of an analysis using German expenditure data show that the range implied by these bounds is rather wide, but can be reduced using additional covariates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信