基于移动最小二乘格式的封闭系统物种种群增长模型的数值解

IF 1.7 4区 数学 Q2 MATHEMATICS, APPLIED
F. Asadi-Mehregan, P. Assari, M. Dehghan
{"title":"基于移动最小二乘格式的封闭系统物种种群增长模型的数值解","authors":"F. Asadi-Mehregan, P. Assari, M. Dehghan","doi":"10.1080/00207160.2023.2214254","DOIUrl":null,"url":null,"abstract":"In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme\",\"authors\":\"F. Asadi-Mehregan, P. Assari, M. Dehghan\",\"doi\":\"10.1080/00207160.2023.2214254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.\",\"PeriodicalId\":13911,\"journal\":{\"name\":\"International Journal of Computer Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2214254\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2214254","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入了一种数值方法来求解一类由Volterra种群模型导出的非线性积分-微分方程。该模型描述了封闭系统中生物物种的生长特征,并包括一个积分项来考虑毒素积累对物种的影响,以及在logistic方程中发现的常规项。该方法利用离散伽辽金格式,利用移动最小二乘(MLS)算法估计积分微分方程的解。局部加权最小二乘多项式拟合,即MLS方法,是逼近未知函数的一种有价值的方法。由于该方法不需要任何单元结构,因此可称为无网格局部离散伽辽金方法。此外,我们还得到了该方法的误差估计。通过几个非线性积分微分方程,验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme
In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
72
审稿时长
5 months
期刊介绍: International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering. IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include: • Numerical solutions of systems of partial differential equations • Numerical solution of systems or of multi-dimensional partial differential equations • Theory and computations of nonlocal modelling and fractional partial differential equations • Novel multi-scale modelling and computational strategies • Parallel computations • Numerical optimization and controls • Imaging algorithms and vision configurations • Computational stochastic processes and inverse problems • Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification • Computational finance and applications • Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine. Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM. Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work. Papers developed from Conference Proceedings Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信