{"title":"基于移动最小二乘格式的封闭系统物种种群增长模型的数值解","authors":"F. Asadi-Mehregan, P. Assari, M. Dehghan","doi":"10.1080/00207160.2023.2214254","DOIUrl":null,"url":null,"abstract":"In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.","PeriodicalId":13911,"journal":{"name":"International Journal of Computer Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme\",\"authors\":\"F. Asadi-Mehregan, P. Assari, M. Dehghan\",\"doi\":\"10.1080/00207160.2023.2214254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.\",\"PeriodicalId\":13911,\"journal\":{\"name\":\"International Journal of Computer Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/00207160.2023.2214254\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/00207160.2023.2214254","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
On the numerical solution of a population growth model of a species living in a closed system based on the moving least squares scheme
In this research paper, we introduce a numerical approach to solve a particular type of nonlinear integro-differential equations derived from Volterra's population model. This model characterizes the growth of a biological species in a closed system and includes an integral term to consider the influence of toxin accumulation on the species, along with the conventional terms found in the logistic equation. The proposed technique estimates the solution of integro-differential equations utilizing the discrete Galerkin scheme using the moving least squares (MLS) algorithm. The locally weighted least squares polynomial fitting, known as the MLS method, is a valuable approach for approximating unknown functions. Since the offered scheme does not require any cell structures, it can be known as a meshless local discrete Galerkin method. Moreover, we obtain the error estimate of the proposed approach. The validity and efficiency of the newly developed technique are assessed over several nonlinear integro-differential equations.
期刊介绍:
International Journal of Computer Mathematics (IJCM) is a world-leading journal serving the community of researchers in numerical analysis and scientific computing from academia to industry. IJCM publishes original research papers of high scientific value in fields of computational mathematics with profound applications to science and engineering.
IJCM welcomes papers on the analysis and applications of innovative computational strategies as well as those with rigorous explorations of cutting-edge techniques and concerns in computational mathematics. Topics IJCM considers include:
• Numerical solutions of systems of partial differential equations
• Numerical solution of systems or of multi-dimensional partial differential equations
• Theory and computations of nonlocal modelling and fractional partial differential equations
• Novel multi-scale modelling and computational strategies
• Parallel computations
• Numerical optimization and controls
• Imaging algorithms and vision configurations
• Computational stochastic processes and inverse problems
• Stochastic partial differential equations, Monte Carlo simulations and uncertainty quantification
• Computational finance and applications
• Highly vibrant and robust algorithms, and applications in modern industries, including but not limited to multi-physics, economics and biomedicine.
Papers discussing only variations or combinations of existing methods without significant new computational properties or analysis are not of interest to IJCM.
Please note that research in the development of computer systems and theory of computing are not suitable for submission to IJCM. Please instead consider International Journal of Computer Mathematics: Computer Systems Theory (IJCM: CST) for your manuscript. Please note that any papers submitted relating to these fields will be transferred to IJCM:CST. Please ensure you submit your paper to the correct journal to save time reviewing and processing your work.
Papers developed from Conference Proceedings
Please note that papers developed from conference proceedings or previously published work must contain at least 40% new material and significantly extend or improve upon earlier research in order to be considered for IJCM.