最小和极大子多集的多集阶性质

Aurelian Radoaca
{"title":"最小和极大子多集的多集阶性质","authors":"Aurelian Radoaca","doi":"10.1109/SYNASC.2015.31","DOIUrl":null,"url":null,"abstract":"We analyze the relations between the multisets and their submultisets involved in the multiset order M>msoand derive many properties that can be used in proofs. These properties are used to refine some proofs of known results, like the transitivity or the termination of >mso. These properties also enable a better understandingof the underlying theory and can be use din implementations of theorem provers. For two finite multisets M, N, there can be several pairs of their submultisets that satisfy M>mso N, which can be seen as solutions to the equation M>mso N. We determine the number of solutions that satisfy M>mso N and establish an order between them, not total, but admittinga minimum and a maximum. We determine the formulae for the minimal submultisets and provide several algorithmsto find the maximal submultisets. The minimal submultisetsare necessary and sufficient to determine if M>mso N. The minimal and maximal submultisets also allow for a deeperanalysis in termination problems with multiset orders, being able to determine, for instance, how fast a program can terminate.","PeriodicalId":6488,"journal":{"name":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"52 1","pages":"145-152"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Properties of Multiset Orders by Minimal and Maximal Submultisets\",\"authors\":\"Aurelian Radoaca\",\"doi\":\"10.1109/SYNASC.2015.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the relations between the multisets and their submultisets involved in the multiset order M>msoand derive many properties that can be used in proofs. These properties are used to refine some proofs of known results, like the transitivity or the termination of >mso. These properties also enable a better understandingof the underlying theory and can be use din implementations of theorem provers. For two finite multisets M, N, there can be several pairs of their submultisets that satisfy M>mso N, which can be seen as solutions to the equation M>mso N. We determine the number of solutions that satisfy M>mso N and establish an order between them, not total, but admittinga minimum and a maximum. We determine the formulae for the minimal submultisets and provide several algorithmsto find the maximal submultisets. The minimal submultisetsare necessary and sufficient to determine if M>mso N. The minimal and maximal submultisets also allow for a deeperanalysis in termination problems with multiset orders, being able to determine, for instance, how fast a program can terminate.\",\"PeriodicalId\":6488,\"journal\":{\"name\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"volume\":\"52 1\",\"pages\":\"145-152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2015.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2015.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们分析了多集阶M>mso下的多集及其子多集之间的关系,并得到了许多可用于证明的性质。这些性质用于改进一些已知结果的证明,如传递性或>mso的终止性。这些属性还可以更好地理解基础理论,并且可以在定理证明的实现中使用。对于两个有限多集M, N,它们的子多集可以有若干对满足M>mso N的子多集,它们可以看作是方程M>mso N的解。我们确定满足M>mso N的解的个数,并在它们之间建立一个次序,不是全部,但允许有最大值和最小值。我们确定了最小子多集的公式,并给出了几种求最大子多集的算法。最小子多集对于确定M是否>mso n是必要和充分的。最小和最大子多集还允许对多集阶的终止问题进行更深入的分析,例如,能够确定程序的终止速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Properties of Multiset Orders by Minimal and Maximal Submultisets
We analyze the relations between the multisets and their submultisets involved in the multiset order M>msoand derive many properties that can be used in proofs. These properties are used to refine some proofs of known results, like the transitivity or the termination of >mso. These properties also enable a better understandingof the underlying theory and can be use din implementations of theorem provers. For two finite multisets M, N, there can be several pairs of their submultisets that satisfy M>mso N, which can be seen as solutions to the equation M>mso N. We determine the number of solutions that satisfy M>mso N and establish an order between them, not total, but admittinga minimum and a maximum. We determine the formulae for the minimal submultisets and provide several algorithmsto find the maximal submultisets. The minimal submultisetsare necessary and sufficient to determine if M>mso N. The minimal and maximal submultisets also allow for a deeperanalysis in termination problems with multiset orders, being able to determine, for instance, how fast a program can terminate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信