{"title":"相对辛上同调的Mayer-Vietoris性质","authors":"Umut Varolgunes","doi":"10.2140/GT.2021.25.547","DOIUrl":null,"url":null,"abstract":"In this paper, we construct a Hamiltonian Floer theory based invariant called relative symplectic cohomology, which assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. We show the existence of restriction maps, and prove some basic properties. Our main contribution is to identify a natural geometric situation in which relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property. This is tailored to work under certain integrability assumptions, the weakest of which introduces a new geometric object called a barrier - roughly, a one parameter family of rank 2 coisotropic submanifolds. The proof uses a deformation argument in which the topological energy zero (i.e. constant) Floer solutions are the main actors.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"24 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2018-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Mayer–Vietoris property for relative symplectic\\ncohomology\",\"authors\":\"Umut Varolgunes\",\"doi\":\"10.2140/GT.2021.25.547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we construct a Hamiltonian Floer theory based invariant called relative symplectic cohomology, which assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. We show the existence of restriction maps, and prove some basic properties. Our main contribution is to identify a natural geometric situation in which relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property. This is tailored to work under certain integrability assumptions, the weakest of which introduces a new geometric object called a barrier - roughly, a one parameter family of rank 2 coisotropic submanifolds. The proof uses a deformation argument in which the topological energy zero (i.e. constant) Floer solutions are the main actors.\",\"PeriodicalId\":55105,\"journal\":{\"name\":\"Geometry & Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2018-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry & Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/GT.2021.25.547\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GT.2021.25.547","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mayer–Vietoris property for relative symplectic
cohomology
In this paper, we construct a Hamiltonian Floer theory based invariant called relative symplectic cohomology, which assigns a module over the Novikov ring to compact subsets of closed symplectic manifolds. We show the existence of restriction maps, and prove some basic properties. Our main contribution is to identify a natural geometric situation in which relative symplectic cohomology of two subsets satisfy the Mayer-Vietoris property. This is tailored to work under certain integrability assumptions, the weakest of which introduces a new geometric object called a barrier - roughly, a one parameter family of rank 2 coisotropic submanifolds. The proof uses a deformation argument in which the topological energy zero (i.e. constant) Floer solutions are the main actors.
期刊介绍:
Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers.
The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.