部分注浆砌体墙体抗剪强度的ECBO-ANN混合算法

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL
A. Kaveh, Neda Khavaninzadeh
{"title":"部分注浆砌体墙体抗剪强度的ECBO-ANN混合算法","authors":"A. Kaveh, Neda Khavaninzadeh","doi":"10.3311/ppci.22653","DOIUrl":null,"url":null,"abstract":"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.","PeriodicalId":49705,"journal":{"name":"Periodica Polytechnica-Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls\",\"authors\":\"A. Kaveh, Neda Khavaninzadeh\",\"doi\":\"10.3311/ppci.22653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.\",\"PeriodicalId\":49705,\"journal\":{\"name\":\"Periodica Polytechnica-Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Periodica Polytechnica-Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3311/ppci.22653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica Polytechnica-Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3311/ppci.22653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人工神经网络(ANN)已成为流行和有效的机器学习模型之一,具有处理非常复杂问题的独特能力,并且具有在没有定义算法解决方案的情况下预测准确结果的潜力。然而,人工神经网络的结构和参数通常是根据经验选择的。由于砌体材料固有的各向异性以及砂浆、砌块、灌浆单元、非灌浆单元和钢筋之间的非线性相互作用,部分灌浆砌体剪力墙的性能非常复杂。本研究的目的是将ECBO元启发式算法与人工神经网络结构相结合,建立人工神经网络模型,优化前馈传播网络参数,用于分析PG墙的抗剪强度。从现有文献中收集的255个PG测试数据用于生成训练和测试数据集。采用均方误差、均方根误差和相关系数(R)等验证标准对模型进行验证。在本研究中,得到了隐层中使用的最优神经元数以及ECBO算法中所需的最优CBs数。并结合元启发式算法给出了优化后的神经网络模型的数学表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hybrid ECBO–ANN Algorithm for Shear Strength of Partially Grouted Masonry Walls
In recent years, artificial neural network (ANN) has become one of the popular and effective machine learning models, having a unique ability to handle very complex problems and the potential to predict accurate results without a defined algorithmic solution. However, the ANN structure and parameters are usually chosen by experience.The behavior of Partially Grouted (PG) masonry shear walls is complex due to the inherent anisotropic properties of the masonry materials and the nonlinear interactions between mortar, blocks, grouted cells, non-grouted cells, and reinforcing steel.In this study, the aim is to develop an artificial neural network model by combining the ECBO meta-heuristic algorithm with the artificial neural network structure to optimize the feed forward propagation network parameters for analyzing the shear strength of PG walls.A total of 255 test data on PG collected from the available literature were used to generate training and test data sets. Various validation criteria such as mean square error, root mean square error and correlation coefficient (R) are used to validate the models.In this study, the optimal number of neurons used in the hidden layer and also the optimal number of CBs required in the ECBO algorithm were obtained. The mathematical formulation of the optimized neural network model with the combination of meta-heuristic algorithm is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Periodica Polytechnica-Civil Engineering
Periodica Polytechnica-Civil Engineering 工程技术-工程:土木
CiteScore
3.40
自引率
16.70%
发文量
89
审稿时长
12 months
期刊介绍: Periodica Polytechnica Civil Engineering is a peer reviewed scientific journal published by the Faculty of Civil Engineering of the Budapest University of Technology and Economics. It was founded in 1957. Publication frequency: quarterly. Periodica Polytechnica Civil Engineering publishes both research and application oriented papers, in the area of civil engineering. The main scope of the journal is to publish original research articles in the wide field of civil engineering, including geodesy and surveying, construction materials and engineering geology, photogrammetry and geoinformatics, geotechnics, structural engineering, architectural engineering, structural mechanics, highway and railway engineering, hydraulic and water resources engineering, sanitary and environmental engineering, engineering optimisation and history of civil engineering. The journal is abstracted by several international databases, see the main page.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信