{"title":"基于注意机制的增强非局部级联网络高光谱图像去噪","authors":"Hanwen Ma, Ganchao Liu, Yuan Yuan","doi":"10.1109/ICASSP40776.2020.9054630","DOIUrl":null,"url":null,"abstract":"Because of the complexity of imaging environment, hyper-spectral remote sensing images (HSIs) often suffer from different kinds of noise. Despite the success in natural image denoising, most of the existing CNN-based HSIs denoising methods still suffer from the problem of inadequate noise suppression and insufficient feature extraction. In this paper, a novel HSIs denoising algorithm based on an enhanced non-local cascading network with attention mechanism (ENCAM) is proposed, which can extract the joint spatial-spectral feature more effectively. The main contributions include: (1) the non-local structure is introduced to enlarge the receptive field to extract the spatial features more effectively; (2) multi-scale convolutions and channel attention module are applied to enhance extracted multi-scale features; (3) a cascading residual dense structure is used to extract different frequency features. Both of the theoretical analysis and the experiments indicate that the proposed method is superior to the other state-of-the-art methods on HSIs denoising.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"6 1","pages":"2448-2452"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Enhanced Non-Local Cascading Network with Attention Mechanism for Hyperspectral Image Denoising\",\"authors\":\"Hanwen Ma, Ganchao Liu, Yuan Yuan\",\"doi\":\"10.1109/ICASSP40776.2020.9054630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the complexity of imaging environment, hyper-spectral remote sensing images (HSIs) often suffer from different kinds of noise. Despite the success in natural image denoising, most of the existing CNN-based HSIs denoising methods still suffer from the problem of inadequate noise suppression and insufficient feature extraction. In this paper, a novel HSIs denoising algorithm based on an enhanced non-local cascading network with attention mechanism (ENCAM) is proposed, which can extract the joint spatial-spectral feature more effectively. The main contributions include: (1) the non-local structure is introduced to enlarge the receptive field to extract the spatial features more effectively; (2) multi-scale convolutions and channel attention module are applied to enhance extracted multi-scale features; (3) a cascading residual dense structure is used to extract different frequency features. Both of the theoretical analysis and the experiments indicate that the proposed method is superior to the other state-of-the-art methods on HSIs denoising.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"6 1\",\"pages\":\"2448-2452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9054630\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced Non-Local Cascading Network with Attention Mechanism for Hyperspectral Image Denoising
Because of the complexity of imaging environment, hyper-spectral remote sensing images (HSIs) often suffer from different kinds of noise. Despite the success in natural image denoising, most of the existing CNN-based HSIs denoising methods still suffer from the problem of inadequate noise suppression and insufficient feature extraction. In this paper, a novel HSIs denoising algorithm based on an enhanced non-local cascading network with attention mechanism (ENCAM) is proposed, which can extract the joint spatial-spectral feature more effectively. The main contributions include: (1) the non-local structure is introduced to enlarge the receptive field to extract the spatial features more effectively; (2) multi-scale convolutions and channel attention module are applied to enhance extracted multi-scale features; (3) a cascading residual dense structure is used to extract different frequency features. Both of the theoretical analysis and the experiments indicate that the proposed method is superior to the other state-of-the-art methods on HSIs denoising.