寻求多元推理逻辑:求解数学字题的控制方程表达式生成

Q3 Environmental Science
Yibin Shen, Qianying Liu, Zhuoyuan Mao, Zhen Wan, Fei Cheng, S. Kurohashi
{"title":"寻求多元推理逻辑:求解数学字题的控制方程表达式生成","authors":"Yibin Shen, Qianying Liu, Zhuoyuan Mao, Zhen Wan, Fei Cheng, S. Kurohashi","doi":"10.48550/arXiv.2209.10310","DOIUrl":null,"url":null,"abstract":"To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.","PeriodicalId":39298,"journal":{"name":"AACL Bioflux","volume":"68 1","pages":"254-260"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Seeking Diverse Reasoning Logic: Controlled Equation Expression Generation for Solving Math Word Problems\",\"authors\":\"Yibin Shen, Qianying Liu, Zhuoyuan Mao, Zhen Wan, Fei Cheng, S. Kurohashi\",\"doi\":\"10.48550/arXiv.2209.10310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.\",\"PeriodicalId\":39298,\"journal\":{\"name\":\"AACL Bioflux\",\"volume\":\"68 1\",\"pages\":\"254-260\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AACL Bioflux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2209.10310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AACL Bioflux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.10310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 4

摘要

为了解决数学应用题,人类学生利用不同的推理逻辑来达到不同的可能的方程解。然而,自动求解器的主流序列到序列方法旨在解码由人类注释监督的固定解方程。在本文中,我们提出了一种控制方程生成求解器,利用一组控制代码来引导模型考虑一定的推理逻辑,并解码由人类参考转换而来的相应方程表达式。实证结果表明,我们的方法普遍提高了单未知(Math23K)和多未知(DRAW1K, HMWP)基准测试的性能,在具有挑战性的多未知数据集上,准确率提高了13.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seeking Diverse Reasoning Logic: Controlled Equation Expression Generation for Solving Math Word Problems
To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AACL Bioflux
AACL Bioflux Environmental Science-Management, Monitoring, Policy and Law
CiteScore
1.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信