基于像素的流水线硬件架构,用于高性能haar类特征提取

Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch
{"title":"基于像素的流水线硬件架构,用于高性能haar类特征提取","authors":"Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch","doi":"10.1109/APCCAS.2016.7804044","DOIUrl":null,"url":null,"abstract":"Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pixel-based pipeline hardware architecture for high-performance Haar-like feature extraction\",\"authors\":\"Y. Fujita, F. An, A. Luo, X. Zhang, Lei Chen, H. Mattausch\",\"doi\":\"10.1109/APCCAS.2016.7804044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.\",\"PeriodicalId\":6495,\"journal\":{\"name\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS.2016.7804044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7804044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

特征提取是模式识别的基本任务之一,计算量大,内存占用大。在这项工作中,我们提出了一种基于像素的流水线硬件架构,用于haar类特征提取,该架构采用0.18 μm CMOS技术,核心面积为1.76 mm2。像素输入速度依赖于图像传感器的工作频率,因此无需片上图像缓冲和复杂的计算过程即可实时提取特征。该芯片在1.8 V电源电压和12.5 MHz频率下,在30 fps的VGA视频输入下,功耗为4.78 mW。此外,在100 MHz频率下,每个VGA帧的处理时间为3.07 ms,功耗为36.25 mW是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pixel-based pipeline hardware architecture for high-performance Haar-like feature extraction
Feature extraction, which is one of the basic tasks for pattern recognition, has often high computational cost and large memory usage. In this work, we propose a pixel-based pipeline hardware architecture for Haar-like feature extraction, implemented in 0.18 μm CMOS technology with 1.76 mm2 core area. Pixel-input speed relies on the working frequency of the image sensor so that features are extracted in real time without on-chip image buffer and complex computational procedures. The fabricated chip consumes 4.78 mW power at 1.8 V supply voltage and 12.5 MHz frequency during 30 fps VGA video input. Furthermore, a processing time of 3.07 ms per VGA frame with power dissipation of 36.25 mW at 100 MHz frequency is possible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信