有界格上的半t算子和幂等半t算子

IF 1.9 4区 数学 Q1 MATHEMATICS
Yan Wang, Z. Li, Huaxiang Liu
{"title":"有界格上的半t算子和幂等半t算子","authors":"Yan Wang, Z. Li, Huaxiang Liu","doi":"10.22111/IJFS.2021.5918","DOIUrl":null,"url":null,"abstract":"Recently, Fang and Hu introduced the definition of semi-t-operators on bounded lattices. In this study, we propose several construction methods to obtain such a semi-t-operator from a given semi-t-conorm and semi-t-norm on bounded lattices. Furthermore, we discuss the presence of idempotent semi-t-operators on bounded lattices, and show several different methods for construction of idempotent semi-t-operators on bounded lattices with additional constraints.","PeriodicalId":54920,"journal":{"name":"Iranian Journal of Fuzzy Systems","volume":"15 1","pages":"109-125"},"PeriodicalIF":1.9000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Semi-t-operators and idempotent semi-t-operators on bounded lattices\",\"authors\":\"Yan Wang, Z. Li, Huaxiang Liu\",\"doi\":\"10.22111/IJFS.2021.5918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Fang and Hu introduced the definition of semi-t-operators on bounded lattices. In this study, we propose several construction methods to obtain such a semi-t-operator from a given semi-t-conorm and semi-t-norm on bounded lattices. Furthermore, we discuss the presence of idempotent semi-t-operators on bounded lattices, and show several different methods for construction of idempotent semi-t-operators on bounded lattices with additional constraints.\",\"PeriodicalId\":54920,\"journal\":{\"name\":\"Iranian Journal of Fuzzy Systems\",\"volume\":\"15 1\",\"pages\":\"109-125\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Fuzzy Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.22111/IJFS.2021.5918\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Fuzzy Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.22111/IJFS.2021.5918","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

最近,Fang和Hu引入了有界格上的半t算子的定义。在本研究中,我们提出了几种构造方法来从给定的有界格上的半t保形和半t范数得到这样的半t算子。进一步讨论了有界格上幂等半t算子的存在性,并给出了在附加约束条件下构造有界格上幂等半t算子的几种不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-t-operators and idempotent semi-t-operators on bounded lattices
Recently, Fang and Hu introduced the definition of semi-t-operators on bounded lattices. In this study, we propose several construction methods to obtain such a semi-t-operator from a given semi-t-conorm and semi-t-norm on bounded lattices. Furthermore, we discuss the presence of idempotent semi-t-operators on bounded lattices, and show several different methods for construction of idempotent semi-t-operators on bounded lattices with additional constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
16.70%
发文量
0
期刊介绍: The two-monthly Iranian Journal of Fuzzy Systems (IJFS) aims to provide an international forum for refereed original research works in the theory and applications of fuzzy sets and systems in the areas of foundations, pure mathematics, artificial intelligence, control, robotics, data analysis, data mining, decision making, finance and management, information systems, operations research, pattern recognition and image processing, soft computing and uncertainty modeling. Manuscripts submitted to the IJFS must be original unpublished work and should not be in consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信