利用图像处理和YOLO构建无人机导航系统,并在工业上应用

João Vitor Pereira Sabino, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero
{"title":"利用图像处理和YOLO构建无人机导航系统,并在工业上应用","authors":"João Vitor Pereira Sabino, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero","doi":"10.5747/ce.2021.v13.n4.e375","DOIUrl":null,"url":null,"abstract":"In this work we developed a semi-autonomous drone navigation system for a cardboard box industry, to assist in counting the stock of cardboard reels. The developed methodology has four main steps, being the QR Code decoding, optical marker detection, navigation system and drone movement. For the QR Code decoding step, the pyzbar library was used. In the optical marker detection step, the YOLOv4 Tiny library was used, which uses machine learning techniques to detect objects in real time. YOLOv4 Tiny was trained using a custom dataset with images of optical markers and labels in a closed simulation environment, achieving a hit rate of 92.10%. The navigation system step is fed by the response of the neural network, in which each marker has a function associated with it. The last step depends on the navigation system, since it sends which command the drone must follow and the movement sends this command to the drone.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"UTILIZANDO PROCESSAMENTO DE IMAGENS E YOLO PARA A CONSTRUÇÃO DE UM SISTEMA DE NAVEGAÇÃO DE UM DRONE COM APLICAÇÃO EM UMA INDÚSTRIA\",\"authors\":\"João Vitor Pereira Sabino, Francisco Assis da Silva, Leandro Luiz de Almeida, Danillo Roberto Pereira, A. O. Artero\",\"doi\":\"10.5747/ce.2021.v13.n4.e375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we developed a semi-autonomous drone navigation system for a cardboard box industry, to assist in counting the stock of cardboard reels. The developed methodology has four main steps, being the QR Code decoding, optical marker detection, navigation system and drone movement. For the QR Code decoding step, the pyzbar library was used. In the optical marker detection step, the YOLOv4 Tiny library was used, which uses machine learning techniques to detect objects in real time. YOLOv4 Tiny was trained using a custom dataset with images of optical markers and labels in a closed simulation environment, achieving a hit rate of 92.10%. The navigation system step is fed by the response of the neural network, in which each marker has a function associated with it. The last step depends on the navigation system, since it sends which command the drone must follow and the movement sends this command to the drone.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2021.v13.n4.e375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2021.v13.n4.e375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们为纸箱行业开发了一种半自动无人机导航系统,以协助计算纸板卷的库存。开发的方法有四个主要步骤,即二维码解码,光学标记检测,导航系统和无人机运动。对于QR码解码步骤,使用pyzbar库。在光学标记检测步骤中,使用了YOLOv4 Tiny库,该库使用机器学习技术实时检测物体。YOLOv4 Tiny在封闭的模拟环境中使用包含光学标记和标签图像的自定义数据集进行训练,命中率达到92.10%。导航系统步骤由神经网络的响应提供,其中每个标记都有一个与之相关的函数。最后一步取决于导航系统,因为它发送无人机必须遵循的命令,而运动将该命令发送给无人机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UTILIZANDO PROCESSAMENTO DE IMAGENS E YOLO PARA A CONSTRUÇÃO DE UM SISTEMA DE NAVEGAÇÃO DE UM DRONE COM APLICAÇÃO EM UMA INDÚSTRIA
In this work we developed a semi-autonomous drone navigation system for a cardboard box industry, to assist in counting the stock of cardboard reels. The developed methodology has four main steps, being the QR Code decoding, optical marker detection, navigation system and drone movement. For the QR Code decoding step, the pyzbar library was used. In the optical marker detection step, the YOLOv4 Tiny library was used, which uses machine learning techniques to detect objects in real time. YOLOv4 Tiny was trained using a custom dataset with images of optical markers and labels in a closed simulation environment, achieving a hit rate of 92.10%. The navigation system step is fed by the response of the neural network, in which each marker has a function associated with it. The last step depends on the navigation system, since it sends which command the drone must follow and the movement sends this command to the drone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信