利用椭圆偏振光谱和第一性原理计算研究了空位缺陷引起的NiO电子和光学性质的变化

K. Egbo, C. Liu, C. Ekuma, K. Yu
{"title":"利用椭圆偏振光谱和第一性原理计算研究了空位缺陷引起的NiO电子和光学性质的变化","authors":"K. Egbo, C. Liu, C. Ekuma, K. Yu","doi":"10.1063/5.0021650","DOIUrl":null,"url":null,"abstract":"Native defects in semiconductors play an important role in their optoelectronic properties. Nickel oxide (NiO) is one of the few wide-gap p-type oxide semiconductors and its conductivity is believed to be controlled primarily by Ni-vacancy acceptors. Herein, we present a systematic study comparing the optoelectronic properties of stoichiometric NiO, oxygen-rich NiO with Ni vacancies (NiO:VNi), and Ni-rich NiO with O vacancies (NiO:VO). The optical properties were obtained by spectroscopic ellipsometry, while valence band spectra were probed by high-resolution x-ray photoelectron spectroscopy. The experimental results are directly compared to first-principles density functional theory + U calculations. Computational results confirm that gap states are present in both NiO systems with vacancies. Gap states in NiO:Vo are predominantly Ni 3d states, while those in NiO:VNi are composed of both Ni 3d and O 2p states. The absorption spectra of the NiO:VNi sample show significant defect-induced features below 3.0 eV compared to NiO and NiO:VO samples. The increase in sub-gap absorptions in NiO:VNi can be attributed to gap states observed in the electronic density of states. The relation between native vacancy defects and electronic and optical properties of NiO are demonstrated, showing that at similar vacancy concentration, the optical constants of NiO:VNi deviate significantly from those of NiO:VO. Our experimental and computational results reveal that although VNi are effective acceptors in NiO, they also degrade the visible transparency of the material. Hence, for transparent optoelectronic device applications, an optimization of native VNi defects with extrinsic doping is required to simultaneously enhance p-type conductivity and transparency.","PeriodicalId":8467,"journal":{"name":"arXiv: Materials Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations\",\"authors\":\"K. Egbo, C. Liu, C. Ekuma, K. Yu\",\"doi\":\"10.1063/5.0021650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Native defects in semiconductors play an important role in their optoelectronic properties. Nickel oxide (NiO) is one of the few wide-gap p-type oxide semiconductors and its conductivity is believed to be controlled primarily by Ni-vacancy acceptors. Herein, we present a systematic study comparing the optoelectronic properties of stoichiometric NiO, oxygen-rich NiO with Ni vacancies (NiO:VNi), and Ni-rich NiO with O vacancies (NiO:VO). The optical properties were obtained by spectroscopic ellipsometry, while valence band spectra were probed by high-resolution x-ray photoelectron spectroscopy. The experimental results are directly compared to first-principles density functional theory + U calculations. Computational results confirm that gap states are present in both NiO systems with vacancies. Gap states in NiO:Vo are predominantly Ni 3d states, while those in NiO:VNi are composed of both Ni 3d and O 2p states. The absorption spectra of the NiO:VNi sample show significant defect-induced features below 3.0 eV compared to NiO and NiO:VO samples. The increase in sub-gap absorptions in NiO:VNi can be attributed to gap states observed in the electronic density of states. The relation between native vacancy defects and electronic and optical properties of NiO are demonstrated, showing that at similar vacancy concentration, the optical constants of NiO:VNi deviate significantly from those of NiO:VO. Our experimental and computational results reveal that although VNi are effective acceptors in NiO, they also degrade the visible transparency of the material. Hence, for transparent optoelectronic device applications, an optimization of native VNi defects with extrinsic doping is required to simultaneously enhance p-type conductivity and transparency.\",\"PeriodicalId\":8467,\"journal\":{\"name\":\"arXiv: Materials Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Materials Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0021650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Materials Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0021650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

半导体中的天然缺陷对其光电性能起着重要的作用。氧化镍(NiO)是为数不多的宽间隙p型氧化物半导体之一,其电导率主要由ni空位受体控制。在此,我们系统地研究了化学计量NiO,富氧NiO与Ni空位(NiO:VNi)和富镍NiO与O空位(NiO:VO)的光电性能。光学性质采用椭圆偏振光谱法测定,价带光谱采用高分辨率x射线光电子能谱法测定。实验结果与第一性原理密度泛函理论+ U计算结果进行了直接比较。计算结果证实了两种有空位的NiO体系都存在间隙态。NiO:Vo中的间隙态主要是Ni 3d态,而NiO:VNi中的间隙态主要是Ni 3d态和o2p态。与NiO和NiO:VO样品相比,NiO:VNi样品的吸收光谱在3.0 eV以下表现出明显的缺陷诱导特征。NiO:VNi中亚隙吸收的增加可归因于在态的电子密度中观察到的隙态。结果表明,在相同的空位浓度下,NiO:VNi的光学常数与NiO:VO的光学常数存在较大的偏差。我们的实验和计算结果表明,虽然VNi是NiO中的有效受体,但它们也会降低材料的可见透明度。因此,对于透明光电器件的应用,需要通过外源掺杂对VNi缺陷进行优化,以同时提高p型电导率和透明度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations
Native defects in semiconductors play an important role in their optoelectronic properties. Nickel oxide (NiO) is one of the few wide-gap p-type oxide semiconductors and its conductivity is believed to be controlled primarily by Ni-vacancy acceptors. Herein, we present a systematic study comparing the optoelectronic properties of stoichiometric NiO, oxygen-rich NiO with Ni vacancies (NiO:VNi), and Ni-rich NiO with O vacancies (NiO:VO). The optical properties were obtained by spectroscopic ellipsometry, while valence band spectra were probed by high-resolution x-ray photoelectron spectroscopy. The experimental results are directly compared to first-principles density functional theory + U calculations. Computational results confirm that gap states are present in both NiO systems with vacancies. Gap states in NiO:Vo are predominantly Ni 3d states, while those in NiO:VNi are composed of both Ni 3d and O 2p states. The absorption spectra of the NiO:VNi sample show significant defect-induced features below 3.0 eV compared to NiO and NiO:VO samples. The increase in sub-gap absorptions in NiO:VNi can be attributed to gap states observed in the electronic density of states. The relation between native vacancy defects and electronic and optical properties of NiO are demonstrated, showing that at similar vacancy concentration, the optical constants of NiO:VNi deviate significantly from those of NiO:VO. Our experimental and computational results reveal that although VNi are effective acceptors in NiO, they also degrade the visible transparency of the material. Hence, for transparent optoelectronic device applications, an optimization of native VNi defects with extrinsic doping is required to simultaneously enhance p-type conductivity and transparency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信