和Drazin矩阵

IF 1.1 Q2 MATHEMATICS, APPLIED
Divya P. Shenoy
{"title":"和Drazin矩阵","authors":"Divya P. Shenoy","doi":"10.3934/naco.2022023","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, two new classes of matrices - Drazin - theta matrix and theta - Drazin matrix are introduced for a square matrix of index <inline-formula><tex-math id=\"M3\">\\begin{document}$ m $\\end{document}</tex-math></inline-formula>. Whenever the index is equal to one, we get special case of matrices called Group - theta matrix and theta - Group matrix respectively. Several characterizations of these matrices, the integral representations, representation in limit form and the representation in terms of rank factorization are obtained. Also, the relationship of Drazin -theta and theta - Drazin matrices with other well known generalized inverses are investigated. By applying the concept of Drazin - theta matrix, general solutions of certain types of matrix equations are characterized here.</p>","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Drazin theta and theta Drazin matrices\",\"authors\":\"Divya P. Shenoy\",\"doi\":\"10.3934/naco.2022023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, two new classes of matrices - Drazin - theta matrix and theta - Drazin matrix are introduced for a square matrix of index <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ m $\\\\end{document}</tex-math></inline-formula>. Whenever the index is equal to one, we get special case of matrices called Group - theta matrix and theta - Group matrix respectively. Several characterizations of these matrices, the integral representations, representation in limit form and the representation in terms of rank factorization are obtained. Also, the relationship of Drazin -theta and theta - Drazin matrices with other well known generalized inverses are investigated. By applying the concept of Drazin - theta matrix, general solutions of certain types of matrix equations are characterized here.</p>\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2022023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2022023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

摘要

In this paper, two new classes of matrices - Drazin - theta matrix and theta - Drazin matrix are introduced for a square matrix of index \begin{document}$ m $\end{document}. Whenever the index is equal to one, we get special case of matrices called Group - theta matrix and theta - Group matrix respectively. Several characterizations of these matrices, the integral representations, representation in limit form and the representation in terms of rank factorization are obtained. Also, the relationship of Drazin -theta and theta - Drazin matrices with other well known generalized inverses are investigated. By applying the concept of Drazin - theta matrix, general solutions of certain types of matrix equations are characterized here.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Drazin theta and theta Drazin matrices

In this paper, two new classes of matrices - Drazin - theta matrix and theta - Drazin matrix are introduced for a square matrix of index \begin{document}$ m $\end{document}. Whenever the index is equal to one, we get special case of matrices called Group - theta matrix and theta - Group matrix respectively. Several characterizations of these matrices, the integral representations, representation in limit form and the representation in terms of rank factorization are obtained. Also, the relationship of Drazin -theta and theta - Drazin matrices with other well known generalized inverses are investigated. By applying the concept of Drazin - theta matrix, general solutions of certain types of matrix equations are characterized here.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
62
期刊介绍: Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信