社交网络中链接激活的影响最大化

Wenjing Yang, L. Brenner, A. Giua
{"title":"社交网络中链接激活的影响最大化","authors":"Wenjing Yang, L. Brenner, A. Giua","doi":"10.1109/ETFA.2018.8502577","DOIUrl":null,"url":null,"abstract":"The propagation of innovations in social networks has been widely studied recently. Previous research mostly focuses on either maximizing the influence by identifying a set of initial adopters, or minimizing the influence by link blocking under a certain diffusion model. In our case, we address an influence maximization problem considering the link activation under the Independent Cascade model. For this problem, we propose an approximate solution based on the computation of a cost-degree coefficient for selecting links to be activated. Simulations performed on a real network show that our algorithm performs well.","PeriodicalId":6566,"journal":{"name":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"2 1","pages":"1248-1251"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Influence Maximization by Link Activation in Social Networks\",\"authors\":\"Wenjing Yang, L. Brenner, A. Giua\",\"doi\":\"10.1109/ETFA.2018.8502577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The propagation of innovations in social networks has been widely studied recently. Previous research mostly focuses on either maximizing the influence by identifying a set of initial adopters, or minimizing the influence by link blocking under a certain diffusion model. In our case, we address an influence maximization problem considering the link activation under the Independent Cascade model. For this problem, we propose an approximate solution based on the computation of a cost-degree coefficient for selecting links to be activated. Simulations performed on a real network show that our algorithm performs well.\",\"PeriodicalId\":6566,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"2 1\",\"pages\":\"1248-1251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2018.8502577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2018.8502577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

近年来,社交网络创新的传播受到了广泛的研究。以往的研究主要集中在通过确定一组初始采用者来最大化影响,或者在一定的扩散模型下通过链接阻塞来最小化影响。在我们的案例中,我们在独立级联模型下考虑链接激活来解决影响最大化问题。对于这个问题,我们提出了一个基于成本度系数计算的近似解,用于选择要激活的链路。在实际网络上的仿真结果表明,该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence Maximization by Link Activation in Social Networks
The propagation of innovations in social networks has been widely studied recently. Previous research mostly focuses on either maximizing the influence by identifying a set of initial adopters, or minimizing the influence by link blocking under a certain diffusion model. In our case, we address an influence maximization problem considering the link activation under the Independent Cascade model. For this problem, we propose an approximate solution based on the computation of a cost-degree coefficient for selecting links to be activated. Simulations performed on a real network show that our algorithm performs well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信