学习未来工作的职业任务分担动态

Subhro Das, Sebastian Steffen, Wyatt Clarke, Prabhat Reddy, E. Brynjolfsson, M. Fleming
{"title":"学习未来工作的职业任务分担动态","authors":"Subhro Das, Sebastian Steffen, Wyatt Clarke, Prabhat Reddy, E. Brynjolfsson, M. Fleming","doi":"10.1145/3375627.3375826","DOIUrl":null,"url":null,"abstract":"The recent wave of AI and automation has been argued to differ from previous General Purpose Technologies (GPTs), in that it may lead to rapid change in occupations' underlying task requirements and persistent technological unemployment. In this paper, we apply a novel methodology of dynamic task shares to a large dataset of online job postings to explore how exactly occupational task demands have changed over the past decade of AI innovation, especially across high, mid and low wage occupations. Notably, big data and AI have risen significantly among high wage occupations since 2012 and 2016, respectively. We built an ARIMA model to predict future occupational task demands and showcase several relevant examples in Healthcare, Administration, and IT. Such task demands predictions across occupations will play a pivotal role in retraining the workforce of the future.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Learning Occupational Task-Shares Dynamics for the Future of Work\",\"authors\":\"Subhro Das, Sebastian Steffen, Wyatt Clarke, Prabhat Reddy, E. Brynjolfsson, M. Fleming\",\"doi\":\"10.1145/3375627.3375826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent wave of AI and automation has been argued to differ from previous General Purpose Technologies (GPTs), in that it may lead to rapid change in occupations' underlying task requirements and persistent technological unemployment. In this paper, we apply a novel methodology of dynamic task shares to a large dataset of online job postings to explore how exactly occupational task demands have changed over the past decade of AI innovation, especially across high, mid and low wage occupations. Notably, big data and AI have risen significantly among high wage occupations since 2012 and 2016, respectively. We built an ARIMA model to predict future occupational task demands and showcase several relevant examples in Healthcare, Administration, and IT. Such task demands predictions across occupations will play a pivotal role in retraining the workforce of the future.\",\"PeriodicalId\":93612,\"journal\":{\"name\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3375627.3375826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

最近的人工智能和自动化浪潮被认为与之前的通用技术(gpt)不同,因为它可能导致职业潜在任务要求的快速变化和持续的技术性失业。在本文中,我们将动态任务份额的新方法应用于在线招聘的大型数据集,以探索在过去十年的人工智能创新中,特别是在高、中、低工资职业中,职业任务需求是如何变化的。值得注意的是,自2012年和2016年以来,大数据和人工智能在高工资职业中分别大幅上升。我们构建了一个ARIMA模型来预测未来的职业任务需求,并展示了医疗保健、管理和IT领域的几个相关示例。这样的任务要求跨职业的预测将在对未来劳动力的再培训中发挥关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Occupational Task-Shares Dynamics for the Future of Work
The recent wave of AI and automation has been argued to differ from previous General Purpose Technologies (GPTs), in that it may lead to rapid change in occupations' underlying task requirements and persistent technological unemployment. In this paper, we apply a novel methodology of dynamic task shares to a large dataset of online job postings to explore how exactly occupational task demands have changed over the past decade of AI innovation, especially across high, mid and low wage occupations. Notably, big data and AI have risen significantly among high wage occupations since 2012 and 2016, respectively. We built an ARIMA model to predict future occupational task demands and showcase several relevant examples in Healthcare, Administration, and IT. Such task demands predictions across occupations will play a pivotal role in retraining the workforce of the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信