泛函数据中二元均值函数的自适应推理

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
A. Ivanescu
{"title":"泛函数据中二元均值函数的自适应推理","authors":"A. Ivanescu","doi":"10.1142/S2424922X1750005X","DOIUrl":null,"url":null,"abstract":"Inference methods are proposed for the bivariate mean function of a continuous stochastic process with a two-dimensional domain. Nonparametric bivariate estimation is facilitated by thresholded projection estimators. Estimators adapt to the sparsity of the bivariate function. Oracle inequality results are developed to describe the adaptive inference methods. The construction of nonparametric bivariate confidence bands is presented. Implementation results show the applicability of the methods in practice.","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"80 1","pages":"1750005:1-1750005:29"},"PeriodicalIF":0.5000,"publicationDate":"2017-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive Inference for the Bivariate Mean Function in Functional Data\",\"authors\":\"A. Ivanescu\",\"doi\":\"10.1142/S2424922X1750005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inference methods are proposed for the bivariate mean function of a continuous stochastic process with a two-dimensional domain. Nonparametric bivariate estimation is facilitated by thresholded projection estimators. Estimators adapt to the sparsity of the bivariate function. Oracle inequality results are developed to describe the adaptive inference methods. The construction of nonparametric bivariate confidence bands is presented. Implementation results show the applicability of the methods in practice.\",\"PeriodicalId\":47145,\"journal\":{\"name\":\"Advances in Data Science and Adaptive Analysis\",\"volume\":\"80 1\",\"pages\":\"1750005:1-1750005:29\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Science and Adaptive Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S2424922X1750005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X1750005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

提出了二维连续随机过程的二元平均函数的推理方法。用阈值投影估计器进行非参数二元估计。估计量适应于二元函数的稀疏性。提出了Oracle不等式结果来描述自适应推理方法。给出了非参数二元置信带的构造。实施结果表明,该方法在实际应用中具有一定的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Inference for the Bivariate Mean Function in Functional Data
Inference methods are proposed for the bivariate mean function of a continuous stochastic process with a two-dimensional domain. Nonparametric bivariate estimation is facilitated by thresholded projection estimators. Estimators adapt to the sparsity of the bivariate function. Oracle inequality results are developed to describe the adaptive inference methods. The construction of nonparametric bivariate confidence bands is presented. Implementation results show the applicability of the methods in practice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信