大多数代数域中整数环的不可定义性

IF 0.6 3区 数学 Q2 LOGIC
Philip Dittmann, Arno Fehm
{"title":"大多数代数域中整数环的不可定义性","authors":"Philip Dittmann, Arno Fehm","doi":"10.1215/00294527-2021-0029","DOIUrl":null,"url":null,"abstract":"We show that the set of algebraic extensions $F$ of $\\mathbb{Q}$ in which $\\mathbb{Z}$ or the ring of integers $\\mathcal{O}_F$ are definable is meager in the set of all algebraic extensions.","PeriodicalId":51259,"journal":{"name":"Notre Dame Journal of Formal Logic","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Nondefinability of Rings of Integers in Most Algebraic Fields\",\"authors\":\"Philip Dittmann, Arno Fehm\",\"doi\":\"10.1215/00294527-2021-0029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the set of algebraic extensions $F$ of $\\\\mathbb{Q}$ in which $\\\\mathbb{Z}$ or the ring of integers $\\\\mathcal{O}_F$ are definable is meager in the set of all algebraic extensions.\",\"PeriodicalId\":51259,\"journal\":{\"name\":\"Notre Dame Journal of Formal Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Notre Dame Journal of Formal Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00294527-2021-0029\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notre Dame Journal of Formal Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00294527-2021-0029","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 3

摘要

证明了$\mathbb{Q}$的代数扩展集$F$,其中$\mathbb{Z}$或整数环$\mathcal{O}_F$是可定义的,在所有代数扩展集合中是最小的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nondefinability of Rings of Integers in Most Algebraic Fields
We show that the set of algebraic extensions $F$ of $\mathbb{Q}$ in which $\mathbb{Z}$ or the ring of integers $\mathcal{O}_F$ are definable is meager in the set of all algebraic extensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
14.30%
发文量
14
审稿时长
>12 weeks
期刊介绍: The Notre Dame Journal of Formal Logic, founded in 1960, aims to publish high quality and original research papers in philosophical logic, mathematical logic, and related areas, including papers of compelling historical interest. The Journal is also willing to selectively publish expository articles on important current topics of interest as well as book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信