检查统计攻击开口的大型击键生物识别数据集

Q Engineering
Abdul Serwadda, V. Phoha
{"title":"检查统计攻击开口的大型击键生物识别数据集","authors":"Abdul Serwadda, V. Phoha","doi":"10.1145/2516960","DOIUrl":null,"url":null,"abstract":"Research on keystroke-based authentication has traditionally assumed human impostors who generate forgeries by physically typing on the keyboard. With bots now well understood to have the capacity to originate precisely timed keystroke sequences, this model of attack is likely to underestimate the threat facing a keystroke-based system in practice. In this work, we investigate how a keystroke-based authentication system would perform if it were subjected to synthetic attacks designed to mimic the typical user. To implement the attacks, we perform a rigorous statistical analysis on keystroke biometrics data collected over a 2-year period from more than 3000 users, and then use the observed statistical traits to design and launch algorithmic attacks against three state-of-the-art password-based keystroke verification systems.\n Relative to the zero-effort attacks typically used to test the performance of keystroke biometric systems, we show that our algorithmic attack increases the mean Equal Error Rates (EERs) of three high performance keystroke verifiers by between 28.6% and 84.4%. We also find that the impact of the attack is more pronounced when the keystroke profiles subjected to the attack are based on shorter strings, and that some users see considerably greater performance degradation under the attack than others. This article calls for a shift from the traditional zero-effort approach of testing the performance of password-based keystroke verifiers, to a more rigorous algorithmic approach that captures the threat posed by today’s bots.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":"45 1","pages":"8"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Examining a Large Keystroke Biometrics Dataset for Statistical-Attack Openings\",\"authors\":\"Abdul Serwadda, V. Phoha\",\"doi\":\"10.1145/2516960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research on keystroke-based authentication has traditionally assumed human impostors who generate forgeries by physically typing on the keyboard. With bots now well understood to have the capacity to originate precisely timed keystroke sequences, this model of attack is likely to underestimate the threat facing a keystroke-based system in practice. In this work, we investigate how a keystroke-based authentication system would perform if it were subjected to synthetic attacks designed to mimic the typical user. To implement the attacks, we perform a rigorous statistical analysis on keystroke biometrics data collected over a 2-year period from more than 3000 users, and then use the observed statistical traits to design and launch algorithmic attacks against three state-of-the-art password-based keystroke verification systems.\\n Relative to the zero-effort attacks typically used to test the performance of keystroke biometric systems, we show that our algorithmic attack increases the mean Equal Error Rates (EERs) of three high performance keystroke verifiers by between 28.6% and 84.4%. We also find that the impact of the attack is more pronounced when the keystroke profiles subjected to the attack are based on shorter strings, and that some users see considerably greater performance degradation under the attack than others. This article calls for a shift from the traditional zero-effort approach of testing the performance of password-based keystroke verifiers, to a more rigorous algorithmic approach that captures the threat posed by today’s bots.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":\"45 1\",\"pages\":\"8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2516960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2516960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 60

摘要

传统上,基于击键的身份验证研究假设人类冒充者通过在键盘上打字来生成伪造品。现在人们已经很清楚,机器人有能力发起精确定时的按键序列,这种攻击模式很可能低估了基于按键的系统在实践中面临的威胁。在这项工作中,我们研究了基于击键的身份验证系统在受到模仿典型用户的合成攻击时会如何执行。为了实施攻击,我们对从3000多名用户收集的2年多时间内的击键生物特征数据进行了严格的统计分析,然后使用观察到的统计特征来设计和启动针对三种最先进的基于密码的击键验证系统的算法攻击。相对于通常用于测试击键生物识别系统性能的零努力攻击,我们表明,我们的算法攻击将三种高性能击键验证器的平均相等错误率(EERs)提高了28.6%至84.4%。我们还发现,当遭受攻击的击键配置文件基于较短的字符串时,攻击的影响更为明显,并且一些用户在攻击下的性能下降要比其他用户严重得多。本文呼吁从传统的测试基于密码的击键验证器性能的零努力方法转向更严格的算法方法,以捕获当今机器人构成的威胁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining a Large Keystroke Biometrics Dataset for Statistical-Attack Openings
Research on keystroke-based authentication has traditionally assumed human impostors who generate forgeries by physically typing on the keyboard. With bots now well understood to have the capacity to originate precisely timed keystroke sequences, this model of attack is likely to underestimate the threat facing a keystroke-based system in practice. In this work, we investigate how a keystroke-based authentication system would perform if it were subjected to synthetic attacks designed to mimic the typical user. To implement the attacks, we perform a rigorous statistical analysis on keystroke biometrics data collected over a 2-year period from more than 3000 users, and then use the observed statistical traits to design and launch algorithmic attacks against three state-of-the-art password-based keystroke verification systems. Relative to the zero-effort attacks typically used to test the performance of keystroke biometric systems, we show that our algorithmic attack increases the mean Equal Error Rates (EERs) of three high performance keystroke verifiers by between 28.6% and 84.4%. We also find that the impact of the attack is more pronounced when the keystroke profiles subjected to the attack are based on shorter strings, and that some users see considerably greater performance degradation under the attack than others. This article calls for a shift from the traditional zero-effort approach of testing the performance of password-based keystroke verifiers, to a more rigorous algorithmic approach that captures the threat posed by today’s bots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Information and System Security
ACM Transactions on Information and System Security 工程技术-计算机:信息系统
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
3.3 months
期刊介绍: ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信