{"title":"通过从属关系形成的星形半径","authors":"A. Sebastian, V. Ravichandran","doi":"10.24193/subbmath.2023.1.12","DOIUrl":null,"url":null,"abstract":"\"A normalized function $f$ on the open unit disc is starlike (or convex) univalent if the associated function $zf'(z)/f(z)$ (or $1+zf''(z)/f'(z)$) is a function with positive real part. The radius of starlikeness or convexity is usually obtained by using the estimates for functions with positive real part. Using subordination, we examine the radius of various starlikeness, in particular, radii of Janowski starlikeness and starlikeness of order $\\beta$, for the function $f$ when the function $f$ is either convex or $(zf'(z)+\\alpha z^2f''(z))/f(z)$ lies in the right-half plane. Radii of starlikeness associated with lemniscate of Bernoulli and exponential functions are also considered.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radius of starlikeness through subordination\",\"authors\":\"A. Sebastian, V. Ravichandran\",\"doi\":\"10.24193/subbmath.2023.1.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\\"A normalized function $f$ on the open unit disc is starlike (or convex) univalent if the associated function $zf'(z)/f(z)$ (or $1+zf''(z)/f'(z)$) is a function with positive real part. The radius of starlikeness or convexity is usually obtained by using the estimates for functions with positive real part. Using subordination, we examine the radius of various starlikeness, in particular, radii of Janowski starlikeness and starlikeness of order $\\\\beta$, for the function $f$ when the function $f$ is either convex or $(zf'(z)+\\\\alpha z^2f''(z))/f(z)$ lies in the right-half plane. Radii of starlikeness associated with lemniscate of Bernoulli and exponential functions are also considered.\\\"\",\"PeriodicalId\":30022,\"journal\":{\"name\":\"Studia Universitatis BabesBolyai Geologia\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Universitatis BabesBolyai Geologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24193/subbmath.2023.1.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
"A normalized function $f$ on the open unit disc is starlike (or convex) univalent if the associated function $zf'(z)/f(z)$ (or $1+zf''(z)/f'(z)$) is a function with positive real part. The radius of starlikeness or convexity is usually obtained by using the estimates for functions with positive real part. Using subordination, we examine the radius of various starlikeness, in particular, radii of Janowski starlikeness and starlikeness of order $\beta$, for the function $f$ when the function $f$ is either convex or $(zf'(z)+\alpha z^2f''(z))/f(z)$ lies in the right-half plane. Radii of starlikeness associated with lemniscate of Bernoulli and exponential functions are also considered."