{"title":"电介质表面锌和酞菁酸石墨烯的电离势计算","authors":"D. Kuranov, T. Andreeva, M. Bedrina","doi":"10.21638/11701/spbu10.2022.104","DOIUrl":null,"url":null,"abstract":"A mathematical model is proposed for calculating the ionization potentials of molecules on the surface of dielectrics in order to quantify changes in the electronic characteristics of materials on a substrate. The semiconductor and photoelectronic properties of nanosystems based on phthalocyanine derivatives are determined by the electronic structure of molecules. Based on the zinc phthalocyaninate molecule ZnC32N8H16, model structures are constructed that increase this molecule by attaching benzene rings ZnC48N8H24, ZnC64N8H32 and a model simulating the film structure of Zn4C120N32 H48. Graphene was considered as a nanostructure modeling a fragment of a monomer lm. The ionization potentials of these compounds on the surface of magnesium oxide, sodium chloride and silicon are calculated. In the presence of a substrate, the ionization potentials of all nanostructures decrease, while the values of the surface ionization potentials remain fundamentally dierent in their magnitude for all compounds. The compound ZnC64N8H32 sprayed onto the surface exhibits the best photoelectronic properties, its surface ionization potential is comparable to graphene.","PeriodicalId":43738,"journal":{"name":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","volume":"8 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics\",\"authors\":\"D. Kuranov, T. Andreeva, M. Bedrina\",\"doi\":\"10.21638/11701/spbu10.2022.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A mathematical model is proposed for calculating the ionization potentials of molecules on the surface of dielectrics in order to quantify changes in the electronic characteristics of materials on a substrate. The semiconductor and photoelectronic properties of nanosystems based on phthalocyanine derivatives are determined by the electronic structure of molecules. Based on the zinc phthalocyaninate molecule ZnC32N8H16, model structures are constructed that increase this molecule by attaching benzene rings ZnC48N8H24, ZnC64N8H32 and a model simulating the film structure of Zn4C120N32 H48. Graphene was considered as a nanostructure modeling a fragment of a monomer lm. The ionization potentials of these compounds on the surface of magnesium oxide, sodium chloride and silicon are calculated. In the presence of a substrate, the ionization potentials of all nanostructures decrease, while the values of the surface ionization potentials remain fundamentally dierent in their magnitude for all compounds. The compound ZnC64N8H32 sprayed onto the surface exhibits the best photoelectronic properties, its surface ionization potential is comparable to graphene.\",\"PeriodicalId\":43738,\"journal\":{\"name\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21638/11701/spbu10.2022.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Sankt-Peterburgskogo Universiteta Seriya 10 Prikladnaya Matematika Informatika Protsessy Upravleniya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21638/11701/spbu10.2022.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Calculation of the ionization potential of zinc and graphene phthalocyaninates on the surface of dielectrics
A mathematical model is proposed for calculating the ionization potentials of molecules on the surface of dielectrics in order to quantify changes in the electronic characteristics of materials on a substrate. The semiconductor and photoelectronic properties of nanosystems based on phthalocyanine derivatives are determined by the electronic structure of molecules. Based on the zinc phthalocyaninate molecule ZnC32N8H16, model structures are constructed that increase this molecule by attaching benzene rings ZnC48N8H24, ZnC64N8H32 and a model simulating the film structure of Zn4C120N32 H48. Graphene was considered as a nanostructure modeling a fragment of a monomer lm. The ionization potentials of these compounds on the surface of magnesium oxide, sodium chloride and silicon are calculated. In the presence of a substrate, the ionization potentials of all nanostructures decrease, while the values of the surface ionization potentials remain fundamentally dierent in their magnitude for all compounds. The compound ZnC64N8H32 sprayed onto the surface exhibits the best photoelectronic properties, its surface ionization potential is comparable to graphene.
期刊介绍:
The journal is the prime outlet for the findings of scientists from the Faculty of applied mathematics and control processes of St. Petersburg State University. It publishes original contributions in all areas of applied mathematics, computer science and control. Vestnik St. Petersburg University: Applied Mathematics. Computer Science. Control Processes features articles that cover the major areas of applied mathematics, computer science and control.