模拟因各级眩光引起的不适的可能性:以户外照明为例

IF 2.6 2区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY
Joffrey Girard, C. Villa, R. Brémond
{"title":"模拟因各级眩光引起的不适的可能性:以户外照明为例","authors":"Joffrey Girard, C. Villa, R. Brémond","doi":"10.1080/15502724.2022.2142133","DOIUrl":null,"url":null,"abstract":"ABSTRACT To limit glare, lighting engineers need to estimate the level of discomfort produced by a lighting installation. Outdoor, most discomfort glare models predict a mean level of discomfort on a judgment scale, which corresponds to a “mean road user.” However, in real life, the inter-individual variability of the sensitivity to glare is large; predicting the mean discomfort does not describe the full pattern of responses in a population. We propose a methodology to model the Discomfort Level, computing the probabilities that an observer reports any of the levels of a discomfort scale. This methodology is demonstrated for outdoor lighting, where no probabilistic model is available. Using a dedicated psychophysical experiment, we extend the results of a previous study where a formula was proposed to compute the Glare Excitation due to a multi-source stimulus, at the Borderline between Comfort and Discomfort (BCD), with a background luminance consistent with outdoor lighting. This formula is first extended to other discomfort levels and background luminance levels, and strengthened thanks to a different experimental protocol and to the use of up to 10 glare sources simultaneously. From this experiment, a formula of the Glare Excitation is proposed in the range of outdoor lighting. Then, a probabilistic model of the Discomfort Level is proposed, allowing computing the probability of ratings at each level of an ordinal scale from the Glare Excitation computed with our formula. It is hoped that the proposed model avoids most of the modeling methodological caveats of previous discomfort glare models.","PeriodicalId":49911,"journal":{"name":"Leukos","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the Probability of Discomfort Due to Glare at All Levels: The Case of Outdoor Lighting\",\"authors\":\"Joffrey Girard, C. Villa, R. Brémond\",\"doi\":\"10.1080/15502724.2022.2142133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT To limit glare, lighting engineers need to estimate the level of discomfort produced by a lighting installation. Outdoor, most discomfort glare models predict a mean level of discomfort on a judgment scale, which corresponds to a “mean road user.” However, in real life, the inter-individual variability of the sensitivity to glare is large; predicting the mean discomfort does not describe the full pattern of responses in a population. We propose a methodology to model the Discomfort Level, computing the probabilities that an observer reports any of the levels of a discomfort scale. This methodology is demonstrated for outdoor lighting, where no probabilistic model is available. Using a dedicated psychophysical experiment, we extend the results of a previous study where a formula was proposed to compute the Glare Excitation due to a multi-source stimulus, at the Borderline between Comfort and Discomfort (BCD), with a background luminance consistent with outdoor lighting. This formula is first extended to other discomfort levels and background luminance levels, and strengthened thanks to a different experimental protocol and to the use of up to 10 glare sources simultaneously. From this experiment, a formula of the Glare Excitation is proposed in the range of outdoor lighting. Then, a probabilistic model of the Discomfort Level is proposed, allowing computing the probability of ratings at each level of an ordinal scale from the Glare Excitation computed with our formula. It is hoped that the proposed model avoids most of the modeling methodological caveats of previous discomfort glare models.\",\"PeriodicalId\":49911,\"journal\":{\"name\":\"Leukos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leukos\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15502724.2022.2142133\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leukos","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15502724.2022.2142133","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

为了限制眩光,照明工程师需要估计照明装置产生的不适程度。在室外,大多数不适眩光模型在判断尺度上预测一个平均不适水平,对应于一个“普通道路使用者”。然而,在现实生活中,对眩光敏感度的个体间差异很大;预测平均不适程度并不能描述人群反应的全部模式。我们提出了一种方法来模拟不适程度,计算观察者报告任何不适程度的概率。这种方法被证明为室外照明,其中没有可用的概率模型。通过一项专门的心理物理实验,我们扩展了之前的研究结果,在该研究中,我们提出了一个公式来计算在舒适和不适(BCD)之间的边界处,背景亮度与室外照明一致的多源刺激引起的眩光激发。该公式首先扩展到其他不适水平和背景亮度水平,并由于不同的实验方案和同时使用多达10个眩光源而得到加强。在此基础上,提出了室外照明范围内的眩光激发公式。然后,提出了一个不适程度的概率模型,允许根据公式计算出的眩光激励在有序尺度上的每个级别上的评级概率。希望所提出的模型避免了以往不适眩光模型的大多数建模方法上的警告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling the Probability of Discomfort Due to Glare at All Levels: The Case of Outdoor Lighting
ABSTRACT To limit glare, lighting engineers need to estimate the level of discomfort produced by a lighting installation. Outdoor, most discomfort glare models predict a mean level of discomfort on a judgment scale, which corresponds to a “mean road user.” However, in real life, the inter-individual variability of the sensitivity to glare is large; predicting the mean discomfort does not describe the full pattern of responses in a population. We propose a methodology to model the Discomfort Level, computing the probabilities that an observer reports any of the levels of a discomfort scale. This methodology is demonstrated for outdoor lighting, where no probabilistic model is available. Using a dedicated psychophysical experiment, we extend the results of a previous study where a formula was proposed to compute the Glare Excitation due to a multi-source stimulus, at the Borderline between Comfort and Discomfort (BCD), with a background luminance consistent with outdoor lighting. This formula is first extended to other discomfort levels and background luminance levels, and strengthened thanks to a different experimental protocol and to the use of up to 10 glare sources simultaneously. From this experiment, a formula of the Glare Excitation is proposed in the range of outdoor lighting. Then, a probabilistic model of the Discomfort Level is proposed, allowing computing the probability of ratings at each level of an ordinal scale from the Glare Excitation computed with our formula. It is hoped that the proposed model avoids most of the modeling methodological caveats of previous discomfort glare models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Leukos
Leukos 工程技术-光学
CiteScore
7.60
自引率
5.60%
发文量
19
审稿时长
>12 weeks
期刊介绍: The Illuminating Engineering Society of North America and our publisher Taylor & Francis make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, The Illuminating Engineering Society of North America and our publisher Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by The Illuminating Engineering Society of North America and our publisher Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. The Illuminating Engineering Society of North America and our publisher Taylor & Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to, or arising out of the use of the Content. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信