二阶椭圆型问题的内罚杂交不连续Galerkin方法族

IF 3.8 2区 数学 Q1 MATHEMATICS
M. Fabien, M. Knepley, B. Rivière
{"title":"二阶椭圆型问题的内罚杂交不连续Galerkin方法族","authors":"M. Fabien, M. Knepley, B. Rivière","doi":"10.1515/jnma-2019-0027","DOIUrl":null,"url":null,"abstract":"Abstract The focus of this paper is the analysis of families of hybridizable interior penalty discontinuous Galerkin methods for second order elliptic problems. We derive a priori error estimates in the energy norm that are optimal with respect to the mesh size. Suboptimal L2-norm error estimates are proven. These results are valid in two and three dimensions. Numerical results support our theoretical findings, and we illustrate the computational cost of the method.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems\",\"authors\":\"M. Fabien, M. Knepley, B. Rivière\",\"doi\":\"10.1515/jnma-2019-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The focus of this paper is the analysis of families of hybridizable interior penalty discontinuous Galerkin methods for second order elliptic problems. We derive a priori error estimates in the energy norm that are optimal with respect to the mesh size. Suboptimal L2-norm error estimates are proven. These results are valid in two and three dimensions. Numerical results support our theoretical findings, and we illustrate the computational cost of the method.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2019-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2019-0027\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0027","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文重点分析了二阶椭圆型问题的可杂交内罚不连续伽辽金方法族。我们在能量范数中推导出相对于网格尺寸最优的先验误差估计。证明了次优l2范数误差估计。这些结果在二维和三维中都是有效的。数值结果支持了我们的理论发现,并说明了该方法的计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Families of interior penalty hybridizable discontinuous Galerkin methods for second order elliptic problems
Abstract The focus of this paper is the analysis of families of hybridizable interior penalty discontinuous Galerkin methods for second order elliptic problems. We derive a priori error estimates in the energy norm that are optimal with respect to the mesh size. Suboptimal L2-norm error estimates are proven. These results are valid in two and three dimensions. Numerical results support our theoretical findings, and we illustrate the computational cost of the method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信