基于左截断和区间截除数据的两两似然半参数变换模型的推理

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Yichen Lou, Peijie Wang, Jianguo Sun
{"title":"基于左截断和区间截除数据的两两似然半参数变换模型的推理","authors":"Yichen Lou, Peijie Wang, Jianguo Sun","doi":"10.1080/10485252.2022.2138383","DOIUrl":null,"url":null,"abstract":"Semi-parametric transformation models provide a general and flexible class of models for regression analysis of failure time data and many methods have been developed for their estimation. In particular, they include the proportional hazards and proportional odds models as special cases. In this paper, we discuss the situation where one observes left-truncated and interval-censored data, for which it does not seem to exist an established method. For the problem, in contrast to the commonly used conditional approach that may not be efficient, a pairwise pseudo-likelihood method is proposed to recover some missing information in the conditional method. The proposed estimators are proved to be consistent and asymptotically efficient and normal. A simulation study is conducted to assess the empirical performance of the method and suggests that it works well in practical situations. This method is illustrated by using a set of real data arising from an HIV/AIDS cohort study.","PeriodicalId":50112,"journal":{"name":"Journal of Nonparametric Statistics","volume":"122 1","pages":"38 - 55"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inference on semi-parametric transformation model with a pairwise likelihood based on left-truncated and interval-censored data\",\"authors\":\"Yichen Lou, Peijie Wang, Jianguo Sun\",\"doi\":\"10.1080/10485252.2022.2138383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-parametric transformation models provide a general and flexible class of models for regression analysis of failure time data and many methods have been developed for their estimation. In particular, they include the proportional hazards and proportional odds models as special cases. In this paper, we discuss the situation where one observes left-truncated and interval-censored data, for which it does not seem to exist an established method. For the problem, in contrast to the commonly used conditional approach that may not be efficient, a pairwise pseudo-likelihood method is proposed to recover some missing information in the conditional method. The proposed estimators are proved to be consistent and asymptotically efficient and normal. A simulation study is conducted to assess the empirical performance of the method and suggests that it works well in practical situations. This method is illustrated by using a set of real data arising from an HIV/AIDS cohort study.\",\"PeriodicalId\":50112,\"journal\":{\"name\":\"Journal of Nonparametric Statistics\",\"volume\":\"122 1\",\"pages\":\"38 - 55\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonparametric Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/10485252.2022.2138383\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonparametric Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/10485252.2022.2138383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

半参数转换模型为失效时间数据的回归分析提供了一种通用的、灵活的模型,并发展了许多方法对其进行估计。特别是,它们将比例风险模型和比例几率模型作为特殊情况。在本文中,我们讨论了观察左截断和区间截尾数据的情况,对于这种情况似乎不存在既定的方法。针对该问题,针对常用的条件方法可能效率不高的问题,提出了一种成对伪似然方法来恢复条件方法中缺失的部分信息。证明了所提估计量是一致的、渐近有效的和正态的。通过仿真研究对该方法的经验性能进行了评估,并表明该方法在实际情况下效果良好。该方法通过使用一组来自艾滋病毒/艾滋病队列研究的真实数据来说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inference on semi-parametric transformation model with a pairwise likelihood based on left-truncated and interval-censored data
Semi-parametric transformation models provide a general and flexible class of models for regression analysis of failure time data and many methods have been developed for their estimation. In particular, they include the proportional hazards and proportional odds models as special cases. In this paper, we discuss the situation where one observes left-truncated and interval-censored data, for which it does not seem to exist an established method. For the problem, in contrast to the commonly used conditional approach that may not be efficient, a pairwise pseudo-likelihood method is proposed to recover some missing information in the conditional method. The proposed estimators are proved to be consistent and asymptotically efficient and normal. A simulation study is conducted to assess the empirical performance of the method and suggests that it works well in practical situations. This method is illustrated by using a set of real data arising from an HIV/AIDS cohort study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nonparametric Statistics
Journal of Nonparametric Statistics 数学-统计学与概率论
CiteScore
1.50
自引率
8.30%
发文量
42
审稿时长
6-12 weeks
期刊介绍: Journal of Nonparametric Statistics provides a medium for the publication of research and survey work in nonparametric statistics and related areas. The scope includes, but is not limited to the following topics: Nonparametric modeling, Nonparametric function estimation, Rank and other robust and distribution-free procedures, Resampling methods, Lack-of-fit testing, Multivariate analysis, Inference with high-dimensional data, Dimension reduction and variable selection, Methods for errors in variables, missing, censored, and other incomplete data structures, Inference of stochastic processes, Sample surveys, Time series analysis, Longitudinal and functional data analysis, Nonparametric Bayes methods and decision procedures, Semiparametric models and procedures, Statistical methods for imaging and tomography, Statistical inverse problems, Financial statistics and econometrics, Bioinformatics and comparative genomics, Statistical algorithms and machine learning. Both the theory and applications of nonparametric statistics are covered in the journal. Research applying nonparametric methods to medicine, engineering, technology, science and humanities is welcomed, provided the novelty and quality level are of the highest order. Authors are encouraged to submit supplementary technical arguments, computer code, data analysed in the paper or any additional information for online publication along with the published paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信