{"title":"材料科学从基于机理的方法到数据驱动的方法","authors":"Stefan Hiemer, Stefano Zapperi","doi":"10.1186/s41313-021-00027-3","DOIUrl":null,"url":null,"abstract":"<div><p>A time-honored approach in theoretical materials science revolves around the search for basic mechanisms that should incorporate key feature of the phenomenon under investigation. Recent years have witnessed an explosion across areas of science of a data-driven approach fueled by recent advances in machine learning. Here we provide a brief perspective on the strengths and weaknesses of mechanism based and data-driven approaches in the context of the mechanics of materials. We discuss recent literature on dislocation dynamics, atomistic plasticity in glasses focusing on the empirical discovery of governing equations through artificial intelligence. We conclude highlighting the main open issues and suggesting possible improvements and future trajectories in the fields.</p></div>","PeriodicalId":693,"journal":{"name":"Materials Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-021-00027-3","citationCount":"0","resultStr":"{\"title\":\"From mechanism-based to data-driven approaches in materials science\",\"authors\":\"Stefan Hiemer, Stefano Zapperi\",\"doi\":\"10.1186/s41313-021-00027-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A time-honored approach in theoretical materials science revolves around the search for basic mechanisms that should incorporate key feature of the phenomenon under investigation. Recent years have witnessed an explosion across areas of science of a data-driven approach fueled by recent advances in machine learning. Here we provide a brief perspective on the strengths and weaknesses of mechanism based and data-driven approaches in the context of the mechanics of materials. We discuss recent literature on dislocation dynamics, atomistic plasticity in glasses focusing on the empirical discovery of governing equations through artificial intelligence. We conclude highlighting the main open issues and suggesting possible improvements and future trajectories in the fields.</p></div>\",\"PeriodicalId\":693,\"journal\":{\"name\":\"Materials Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jmsh.springeropen.com/counter/pdf/10.1186/s41313-021-00027-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Theory\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s41313-021-00027-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Theory","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1186/s41313-021-00027-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From mechanism-based to data-driven approaches in materials science
A time-honored approach in theoretical materials science revolves around the search for basic mechanisms that should incorporate key feature of the phenomenon under investigation. Recent years have witnessed an explosion across areas of science of a data-driven approach fueled by recent advances in machine learning. Here we provide a brief perspective on the strengths and weaknesses of mechanism based and data-driven approaches in the context of the mechanics of materials. We discuss recent literature on dislocation dynamics, atomistic plasticity in glasses focusing on the empirical discovery of governing equations through artificial intelligence. We conclude highlighting the main open issues and suggesting possible improvements and future trajectories in the fields.
期刊介绍:
Journal of Materials Science: Materials Theory publishes all areas of theoretical materials science and related computational methods. The scope covers mechanical, physical and chemical problems in metals and alloys, ceramics, polymers, functional and biological materials at all scales and addresses the structure, synthesis and properties of materials. Proposing novel theoretical concepts, models, and/or mathematical and computational formalisms to advance state-of-the-art technology is critical for submission to the Journal of Materials Science: Materials Theory.
The journal highly encourages contributions focusing on data-driven research, materials informatics, and the integration of theory and data analysis as new ways to predict, design, and conceptualize materials behavior.