{"title":"论向列液晶的Eringen模型","authors":"G. Chechkin, T. Ratiu, M. Romanov","doi":"10.5802/CRMECA.67","DOIUrl":null,"url":null,"abstract":"We introduce the three-dimensional Eringen system of equations for the nematodynamics of liquid crystals, announce the short time existence and uniqueness of strong solutions for the one-dimensional problem in the periodic case, and show the continuous dependence of the solution on the initial data. Résumé. Nous présentons le système tridimensionnel d’équations d’Eringen pour la nématodynamique des cristaux liquides, annonçons l’existence en temps et l’unicité de solutions fortes pour le problème unidimensionnel dans le cas périodique et montrons la dépendance continue de la solution sur les données initiales.","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"15 1","pages":"21-27"},"PeriodicalIF":1.0000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Eringen model for nematic liquid crystals\",\"authors\":\"G. Chechkin, T. Ratiu, M. Romanov\",\"doi\":\"10.5802/CRMECA.67\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the three-dimensional Eringen system of equations for the nematodynamics of liquid crystals, announce the short time existence and uniqueness of strong solutions for the one-dimensional problem in the periodic case, and show the continuous dependence of the solution on the initial data. Résumé. Nous présentons le système tridimensionnel d’équations d’Eringen pour la nématodynamique des cristaux liquides, annonçons l’existence en temps et l’unicité de solutions fortes pour le problème unidimensionnel dans le cas périodique et montrons la dépendance continue de la solution sur les données initiales.\",\"PeriodicalId\":50997,\"journal\":{\"name\":\"Comptes Rendus Mecanique\",\"volume\":\"15 1\",\"pages\":\"21-27\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mecanique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5802/CRMECA.67\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5802/CRMECA.67","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
We introduce the three-dimensional Eringen system of equations for the nematodynamics of liquid crystals, announce the short time existence and uniqueness of strong solutions for the one-dimensional problem in the periodic case, and show the continuous dependence of the solution on the initial data. Résumé. Nous présentons le système tridimensionnel d’équations d’Eringen pour la nématodynamique des cristaux liquides, annonçons l’existence en temps et l’unicité de solutions fortes pour le problème unidimensionnel dans le cas périodique et montrons la dépendance continue de la solution sur les données initiales.
期刊介绍:
The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, …
The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.