基于bch的睡眠-狼编码与反馈综合征的量子密钥和解解码

Patcharapong Treeviriyanupab, P. Sangwongngam, K. Sripimanwat, Ornlarp Sangaroon
{"title":"基于bch的睡眠-狼编码与反馈综合征的量子密钥和解解码","authors":"Patcharapong Treeviriyanupab, P. Sangwongngam, K. Sripimanwat, Ornlarp Sangaroon","doi":"10.1109/ECTICON.2012.6254266","DOIUrl":null,"url":null,"abstract":"The quantum key reconciliation is an essential step of QKD protocol. Its main objective is to correct the transmission error after the distribution of quantum objects over a quantum channel, where two legitimate parties use a classical interactive communication for agreeing on their common key. This paper presents an alternative quantum key reconciliation method based on the Slepian-Wolf coding scheme with the chosen optimal set of BCH code rates as close to the Slepian-Wolf bound. In the proposed scheme, the BCH decoder is modified by adding one-bit feedback based on syndrome decoding to detect uncorrectable errors whenever the decoding process fails. The performance evaluation of this proposed scheme can achieve the reconciliation efficiency and reduce the cost of interactive communication via an error-free public channel comparable to the well-known reconciliation protocols. It is then suitable to apply for higher-speed discrete-variable QKD applications.","PeriodicalId":6319,"journal":{"name":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"39 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"BCH-based Slepian-Wolf coding with feedback syndrome decoding for quantum key reconciliation\",\"authors\":\"Patcharapong Treeviriyanupab, P. Sangwongngam, K. Sripimanwat, Ornlarp Sangaroon\",\"doi\":\"10.1109/ECTICON.2012.6254266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantum key reconciliation is an essential step of QKD protocol. Its main objective is to correct the transmission error after the distribution of quantum objects over a quantum channel, where two legitimate parties use a classical interactive communication for agreeing on their common key. This paper presents an alternative quantum key reconciliation method based on the Slepian-Wolf coding scheme with the chosen optimal set of BCH code rates as close to the Slepian-Wolf bound. In the proposed scheme, the BCH decoder is modified by adding one-bit feedback based on syndrome decoding to detect uncorrectable errors whenever the decoding process fails. The performance evaluation of this proposed scheme can achieve the reconciliation efficiency and reduce the cost of interactive communication via an error-free public channel comparable to the well-known reconciliation protocols. It is then suitable to apply for higher-speed discrete-variable QKD applications.\",\"PeriodicalId\":6319,\"journal\":{\"name\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"39 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2012.6254266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2012.6254266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

量子密钥协调是量子密钥分配协议的重要环节。它的主要目标是纠正量子对象在量子信道上分发后的传输错误,其中两个合法方使用经典的交互通信来商定他们的公共密钥。本文提出了一种基于Slepian-Wolf编码方案的替代量子密钥协调方法,该方法选择了最优BCH码率集,使其接近Slepian-Wolf界。在该方案中,对BCH解码器进行了改进,增加了基于综合征解码的1位反馈,以便在解码过程失败时检测不可纠正的错误。性能评估表明,该方案可以达到和解效率,并降低通过无错误的公共通道进行交互通信的成本,可与知名的和解协议相媲美。因此,它适用于高速离散变量QKD应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BCH-based Slepian-Wolf coding with feedback syndrome decoding for quantum key reconciliation
The quantum key reconciliation is an essential step of QKD protocol. Its main objective is to correct the transmission error after the distribution of quantum objects over a quantum channel, where two legitimate parties use a classical interactive communication for agreeing on their common key. This paper presents an alternative quantum key reconciliation method based on the Slepian-Wolf coding scheme with the chosen optimal set of BCH code rates as close to the Slepian-Wolf bound. In the proposed scheme, the BCH decoder is modified by adding one-bit feedback based on syndrome decoding to detect uncorrectable errors whenever the decoding process fails. The performance evaluation of this proposed scheme can achieve the reconciliation efficiency and reduce the cost of interactive communication via an error-free public channel comparable to the well-known reconciliation protocols. It is then suitable to apply for higher-speed discrete-variable QKD applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信