用谱法数值解Kawahara方程

Mohammadreza Askaripour Lahiji, Zainal Abdul Aziz
{"title":"用谱法数值解Kawahara方程","authors":"Mohammadreza Askaripour Lahiji,&nbsp;Zainal Abdul Aziz","doi":"10.1016/j.ieri.2014.09.086","DOIUrl":null,"url":null,"abstract":"<div><p>Some nonlinear wave equations are more difficult to investigate mathematically, as no general analytical method for their solutions exists. The Exponential Time Differencing (ETD) technique requires minimum stages to obtain the requiredaccurateness, which suggests an efficient technique relatingto computational duration thatensures remarkable stability characteristicsupon resolving nonlinear wave equations. This article solves the diagonal example of Kawahara equation via the ETD Runge-Kutta 4 technique. Implementation of this technique is proposed by short Matlab programs.</p></div>","PeriodicalId":100649,"journal":{"name":"IERI Procedia","volume":"10 ","pages":"Pages 259-265"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ieri.2014.09.086","citationCount":"9","resultStr":"{\"title\":\"Numerical Solution for Kawahara Equation by Using Spectral Methods\",\"authors\":\"Mohammadreza Askaripour Lahiji,&nbsp;Zainal Abdul Aziz\",\"doi\":\"10.1016/j.ieri.2014.09.086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Some nonlinear wave equations are more difficult to investigate mathematically, as no general analytical method for their solutions exists. The Exponential Time Differencing (ETD) technique requires minimum stages to obtain the requiredaccurateness, which suggests an efficient technique relatingto computational duration thatensures remarkable stability characteristicsupon resolving nonlinear wave equations. This article solves the diagonal example of Kawahara equation via the ETD Runge-Kutta 4 technique. Implementation of this technique is proposed by short Matlab programs.</p></div>\",\"PeriodicalId\":100649,\"journal\":{\"name\":\"IERI Procedia\",\"volume\":\"10 \",\"pages\":\"Pages 259-265\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ieri.2014.09.086\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IERI Procedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212667814001348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IERI Procedia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212667814001348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

有些非线性波动方程的数学研究比较困难,因为它们的解不存在一般的解析方法。指数时差(ETD)技术需要最小的阶段来获得所需的精度,这表明一种与计算时间有关的有效技术,在求解非线性波动方程时确保了显著的稳定性特征。本文利用ETD龙格-库塔4技术求解了河原方程的对角例子。利用Matlab编写的简短程序实现了该技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical Solution for Kawahara Equation by Using Spectral Methods

Some nonlinear wave equations are more difficult to investigate mathematically, as no general analytical method for their solutions exists. The Exponential Time Differencing (ETD) technique requires minimum stages to obtain the requiredaccurateness, which suggests an efficient technique relatingto computational duration thatensures remarkable stability characteristicsupon resolving nonlinear wave equations. This article solves the diagonal example of Kawahara equation via the ETD Runge-Kutta 4 technique. Implementation of this technique is proposed by short Matlab programs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信