基于参数图分割的高效视频分割

Chen-Ping Yu, Hieu M. Le, G. Zelinsky, D. Samaras
{"title":"基于参数图分割的高效视频分割","authors":"Chen-Ping Yu, Hieu M. Le, G. Zelinsky, D. Samaras","doi":"10.1109/ICCV.2015.361","DOIUrl":null,"url":null,"abstract":"Video segmentation is the task of grouping similar pixels in the spatio-temporal domain, and has become an important preprocessing step for subsequent video analysis. Most video segmentation and supervoxel methods output a hierarchy of segmentations, but while this provides useful multiscale information, it also adds difficulty in selecting the appropriate level for a task. In this work, we propose an efficient and robust video segmentation framework based on parametric graph partitioning (PGP), a fast, almost parameter free graph partitioning method that identifies and removes between-cluster edges to form node clusters. Apart from its computational efficiency, PGP performs clustering of the spatio-temporal volume without requiring a pre-specified cluster number or bandwidth parameters, thus making video segmentation more practical to use in applications. The PGP framework also allows processing sub-volumes, which further improves performance, contrary to other streaming video segmentation methods where sub-volume processing reduces performance. We evaluate the PGP method using the SegTrack v2 and Chen Xiph.org datasets, and show that it outperforms related state-of-the-art algorithms in 3D segmentation metrics and running time.","PeriodicalId":6633,"journal":{"name":"2015 IEEE International Conference on Computer Vision (ICCV)","volume":"77 1","pages":"3155-3163"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Efficient Video Segmentation Using Parametric Graph Partitioning\",\"authors\":\"Chen-Ping Yu, Hieu M. Le, G. Zelinsky, D. Samaras\",\"doi\":\"10.1109/ICCV.2015.361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Video segmentation is the task of grouping similar pixels in the spatio-temporal domain, and has become an important preprocessing step for subsequent video analysis. Most video segmentation and supervoxel methods output a hierarchy of segmentations, but while this provides useful multiscale information, it also adds difficulty in selecting the appropriate level for a task. In this work, we propose an efficient and robust video segmentation framework based on parametric graph partitioning (PGP), a fast, almost parameter free graph partitioning method that identifies and removes between-cluster edges to form node clusters. Apart from its computational efficiency, PGP performs clustering of the spatio-temporal volume without requiring a pre-specified cluster number or bandwidth parameters, thus making video segmentation more practical to use in applications. The PGP framework also allows processing sub-volumes, which further improves performance, contrary to other streaming video segmentation methods where sub-volume processing reduces performance. We evaluate the PGP method using the SegTrack v2 and Chen Xiph.org datasets, and show that it outperforms related state-of-the-art algorithms in 3D segmentation metrics and running time.\",\"PeriodicalId\":6633,\"journal\":{\"name\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"volume\":\"77 1\",\"pages\":\"3155-3163\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2015.361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2015.361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

视频分割是在时空域中对相似像素进行分组的任务,已成为后续视频分析的重要预处理步骤。大多数视频分割和超体素方法输出一个分层的分割,但是虽然这提供了有用的多尺度信息,但它也增加了为任务选择适当级别的困难。在这项工作中,我们提出了一种基于参数图划分(PGP)的高效鲁棒视频分割框架,PGP是一种快速、几乎无参数的图划分方法,可以识别和去除聚类之间的边缘以形成节点聚类。除了计算效率外,PGP在不需要预先指定簇数或带宽参数的情况下对时空体进行聚类,从而使视频分割在应用中更加实用。PGP框架还允许处理子卷,这进一步提高了性能,与其他流媒体视频分割方法相反,子卷处理会降低性能。我们使用SegTrack v2和Chen Xiph.org数据集对PGP方法进行了评估,并表明它在3D分割指标和运行时间方面优于相关的最新算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Video Segmentation Using Parametric Graph Partitioning
Video segmentation is the task of grouping similar pixels in the spatio-temporal domain, and has become an important preprocessing step for subsequent video analysis. Most video segmentation and supervoxel methods output a hierarchy of segmentations, but while this provides useful multiscale information, it also adds difficulty in selecting the appropriate level for a task. In this work, we propose an efficient and robust video segmentation framework based on parametric graph partitioning (PGP), a fast, almost parameter free graph partitioning method that identifies and removes between-cluster edges to form node clusters. Apart from its computational efficiency, PGP performs clustering of the spatio-temporal volume without requiring a pre-specified cluster number or bandwidth parameters, thus making video segmentation more practical to use in applications. The PGP framework also allows processing sub-volumes, which further improves performance, contrary to other streaming video segmentation methods where sub-volume processing reduces performance. We evaluate the PGP method using the SegTrack v2 and Chen Xiph.org datasets, and show that it outperforms related state-of-the-art algorithms in 3D segmentation metrics and running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信