最小裁剪二乘和最小二乘中值估计量为极大似然的模型

Vanessa Berenguer-Rico, S. Johansen, B. Nielsen
{"title":"最小裁剪二乘和最小二乘中值估计量为极大似然的模型","authors":"Vanessa Berenguer-Rico, S. Johansen, B. Nielsen","doi":"10.2139/ssrn.3455870","DOIUrl":null,"url":null,"abstract":"The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Models Where the Least Trimmed Squares and Least Median of Squares Estimators Are Maximum Likelihood\",\"authors\":\"Vanessa Berenguer-Rico, S. Johansen, B. Nielsen\",\"doi\":\"10.2139/ssrn.3455870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.\",\"PeriodicalId\":11465,\"journal\":{\"name\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometrics: Econometric & Statistical Methods - General eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3455870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3455870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

最小裁剪二乘(LTS)和最小二乘中值(LMS)估计是常用的鲁棒回归估计。估算器背后的想法是……Nd,对于给定h;h '?的子样本n个观测值中的好观测值,并估计该子样本的回归。我们fi吗?Nd模型,分别基于正态分布或均匀分布,其中这些估计量是最大似然。我们为这些模型中的位置尺度情况提供了一个渐近理论。发现LTS估计量是h1/2一致且渐近标准正态。发现LMS估计量是h一致且渐近拉普拉斯的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Models Where the Least Trimmed Squares and Least Median of Squares Estimators Are Maximum Likelihood
The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to fi?nd, for a given h; a sub-sample of h '?good' ?observations among n observations and estimate the regression on that sub-sample. We fi?nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1/2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信