{"title":"一元局部矩阵代数的初等分解","authors":"O. Bezushchak, B. Oliynyk","doi":"10.1142/s166436072050006x","DOIUrl":null,"url":null,"abstract":"We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"30 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Primary decompositions of unital locally matrix algebras\",\"authors\":\"O. Bezushchak, B. Oliynyk\",\"doi\":\"10.1142/s166436072050006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s166436072050006x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s166436072050006x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12
摘要
构造了一个维数不可数的一元局部矩阵代数,其(1)不允许初等分解,(2)具有无限的局部有限Steinitz数。它对[V.]的问题给出了否定的答案。M. Kurochkin,关于局部简单代数和局部正规代数的理论,vol . b. vol . 22(64)(3) (1948) 443-454;刘建军,单元局部矩阵代数与Steinitz数,代数学报。(2020),在线准备]。我们还证明了对于任意无限Steinitz数[公式:见文],存在具有Steinitz数[公式:见文]且与有限维矩阵代数的张量积不同构的一元局部矩阵代数[公式:见文]。
Primary decompositions of unital locally matrix algebras
We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.
期刊介绍:
The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited.
The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.