一元局部矩阵代数的初等分解

IF 1.1 2区 数学 Q1 MATHEMATICS
O. Bezushchak, B. Oliynyk
{"title":"一元局部矩阵代数的初等分解","authors":"O. Bezushchak, B. Oliynyk","doi":"10.1142/s166436072050006x","DOIUrl":null,"url":null,"abstract":"We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"30 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Primary decompositions of unital locally matrix algebras\",\"authors\":\"O. Bezushchak, B. Oliynyk\",\"doi\":\"10.1142/s166436072050006x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.\",\"PeriodicalId\":9348,\"journal\":{\"name\":\"Bulletin of Mathematical Sciences\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s166436072050006x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s166436072050006x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

构造了一个维数不可数的一元局部矩阵代数,其(1)不允许初等分解,(2)具有无限的局部有限Steinitz数。它对[V.]的问题给出了否定的答案。M. Kurochkin,关于局部简单代数和局部正规代数的理论,vol . b. vol . 22(64)(3) (1948) 443-454;刘建军,单元局部矩阵代数与Steinitz数,代数学报。(2020),在线准备]。我们还证明了对于任意无限Steinitz数[公式:见文],存在具有Steinitz数[公式:见文]且与有限维矩阵代数的张量积不同构的一元局部矩阵代数[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Primary decompositions of unital locally matrix algebras
We construct a unital locally matrix algebra of uncountable dimension that (1) does not admit a primary decomposition, (2) has an infinite locally finite Steinitz number. It gives negative answers to questions from [V. M. Kurochkin, On the theory of locally simple and locally normal algebras, Mat. Sb., Nov. Ser. 22(64)(3) (1948) 443–454; O. Bezushchak and B. Oliynyk, Unital locally matrix algebras and Steinitz numbers, J. Algebra Appl. (2020), online ready]. We also show that for an arbitrary infinite Steinitz number [Formula: see text] there exists a unital locally matrix algebra [Formula: see text] having the Steinitz number [Formula: see text] and not isomorphic to a tensor product of finite-dimensional matrix algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
17
审稿时长
13 weeks
期刊介绍: The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited. The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信