截尾寿命的非参数二元密度估计

S. Efromovich
{"title":"截尾寿命的非参数二元密度估计","authors":"S. Efromovich","doi":"10.1214/22-aos2209","DOIUrl":null,"url":null,"abstract":"It is well known that estimation of a bivariate cumulative distribution function of a pair of right censored lifetimes presents challenges unparalleled to the univariate case where a product-limit Kaplan-Meyer’s methodology typically yields optimal estimation, and the literature on optimal estimation of the joint probability density is next to none. The paper, for the first time in the survival analysis literature, develops the theory and methodology of sharp minimax and adaptive nonparametric estimation of the joint density under the mean integrated squared error (MISE) criterion. The theory shows how an underlying joint density, together with the bivariate distribution of censoring variables, affect the estimation, and what and how may or may not be estimated in the presence of censoring. Practical example illustrates the problem.","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric bivariate density estimation for censored lifetimes\",\"authors\":\"S. Efromovich\",\"doi\":\"10.1214/22-aos2209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well known that estimation of a bivariate cumulative distribution function of a pair of right censored lifetimes presents challenges unparalleled to the univariate case where a product-limit Kaplan-Meyer’s methodology typically yields optimal estimation, and the literature on optimal estimation of the joint probability density is next to none. The paper, for the first time in the survival analysis literature, develops the theory and methodology of sharp minimax and adaptive nonparametric estimation of the joint density under the mean integrated squared error (MISE) criterion. The theory shows how an underlying joint density, together with the bivariate distribution of censoring variables, affect the estimation, and what and how may or may not be estimated in the presence of censoring. Practical example illustrates the problem.\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aos2209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aos2209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,对一对右删节寿命的二元累积分布函数的估计提出了与单变量情况无与伦比的挑战,在单变量情况下,乘积极限Kaplan-Meyer方法通常会产生最佳估计,而关于联合概率密度的最佳估计的文献几乎没有。本文在生存分析文献中首次提出了在平均积分平方误差(MISE)准则下联合密度的急剧极小和自适应非参数估计的理论和方法。该理论显示了潜在的联合密度如何与审查变量的二元分布一起影响估计,以及在审查存在的情况下可以或不可以估计什么和如何估计。一个实例说明了这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonparametric bivariate density estimation for censored lifetimes
It is well known that estimation of a bivariate cumulative distribution function of a pair of right censored lifetimes presents challenges unparalleled to the univariate case where a product-limit Kaplan-Meyer’s methodology typically yields optimal estimation, and the literature on optimal estimation of the joint probability density is next to none. The paper, for the first time in the survival analysis literature, develops the theory and methodology of sharp minimax and adaptive nonparametric estimation of the joint density under the mean integrated squared error (MISE) criterion. The theory shows how an underlying joint density, together with the bivariate distribution of censoring variables, affect the estimation, and what and how may or may not be estimated in the presence of censoring. Practical example illustrates the problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信