股票溢价预测中的数据窥探

H. Dichtl, W. Drobetz, A. Neuhierl, Viktoria-Sophie Wendt
{"title":"股票溢价预测中的数据窥探","authors":"H. Dichtl, W. Drobetz, A. Neuhierl, Viktoria-Sophie Wendt","doi":"10.2139/ssrn.2972011","DOIUrl":null,"url":null,"abstract":"Abstract We analyze the performance of a comprehensive set of equity premium forecasting strategies. All strategies were found to outperform the mean in previous academic publications. However, using a multiple testing framework to account for data snooping, our findings support Welch and Goyal (2008) in that almost all equity premium forecasts fail to beat the mean out-of-sample. Only few forecasting strategies that are based on Ferreira and Santa-Clara’s (2011) sum-of-the-parts approach generate robust and statistically significant economic gains relative to the historical mean even after controlling for data snooping and accounting for transaction costs.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Data Snooping in Equity Premium Prediction\",\"authors\":\"H. Dichtl, W. Drobetz, A. Neuhierl, Viktoria-Sophie Wendt\",\"doi\":\"10.2139/ssrn.2972011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We analyze the performance of a comprehensive set of equity premium forecasting strategies. All strategies were found to outperform the mean in previous academic publications. However, using a multiple testing framework to account for data snooping, our findings support Welch and Goyal (2008) in that almost all equity premium forecasts fail to beat the mean out-of-sample. Only few forecasting strategies that are based on Ferreira and Santa-Clara’s (2011) sum-of-the-parts approach generate robust and statistically significant economic gains relative to the historical mean even after controlling for data snooping and accounting for transaction costs.\",\"PeriodicalId\":11410,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2972011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2972011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文分析了一套综合的股票溢价预测策略。在以前的学术出版物中,所有策略的表现都优于平均值。然而,使用多重测试框架来解释数据窥探,我们的发现支持Welch和Goyal(2008),几乎所有的股票溢价预测都不能超过样本外均值。只有少数基于Ferreira和Santa-Clara(2011)的部分求和方法的预测策略,即使在控制数据窥探和考虑交易成本之后,相对于历史均值,也能产生稳健的、统计上显著的经济收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Snooping in Equity Premium Prediction
Abstract We analyze the performance of a comprehensive set of equity premium forecasting strategies. All strategies were found to outperform the mean in previous academic publications. However, using a multiple testing framework to account for data snooping, our findings support Welch and Goyal (2008) in that almost all equity premium forecasts fail to beat the mean out-of-sample. Only few forecasting strategies that are based on Ferreira and Santa-Clara’s (2011) sum-of-the-parts approach generate robust and statistically significant economic gains relative to the historical mean even after controlling for data snooping and accounting for transaction costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信