多核集群中MATLAB模板应用的高效并行化

Johannes Spazier, Steffen Christgau, Bettina Schnor
{"title":"多核集群中MATLAB模板应用的高效并行化","authors":"Johannes Spazier, Steffen Christgau, Bettina Schnor","doi":"10.1109/WOLFHPC.2016.7","DOIUrl":null,"url":null,"abstract":"This paper presents the automatic parallelization of Stencil codes written in MATLAB for distributed systems. The compiler translates MATLAB source into C code and automatically parallelizes using MPI. For clusters of multi-cores, also a hybrid approach is presented where the generated code combines MPI and OpenMP parallelization. The parallelization concepts are evaluated with two stencil computation benchmarks. The automatically generated code not only outperforms the MATLAB code, but shows also a very good scaling.","PeriodicalId":59014,"journal":{"name":"高性能计算技术","volume":"115 1","pages":"20-29"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Parallelization of MATLAB Stencil Applications for Multi-core Clusters\",\"authors\":\"Johannes Spazier, Steffen Christgau, Bettina Schnor\",\"doi\":\"10.1109/WOLFHPC.2016.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the automatic parallelization of Stencil codes written in MATLAB for distributed systems. The compiler translates MATLAB source into C code and automatically parallelizes using MPI. For clusters of multi-cores, also a hybrid approach is presented where the generated code combines MPI and OpenMP parallelization. The parallelization concepts are evaluated with two stencil computation benchmarks. The automatically generated code not only outperforms the MATLAB code, but shows also a very good scaling.\",\"PeriodicalId\":59014,\"journal\":{\"name\":\"高性能计算技术\",\"volume\":\"115 1\",\"pages\":\"20-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"高性能计算技术\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1109/WOLFHPC.2016.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"高性能计算技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/WOLFHPC.2016.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了用MATLAB编写的分布式系统模板代码的自动并行化。编译器将MATLAB源代码翻译成C代码,并使用MPI自动并行。对于多核集群,还提出了一种混合方法,其中生成的代码结合了MPI和OpenMP并行化。用两个模板计算基准对并行化概念进行了评估。自动生成的代码不仅优于MATLAB代码,而且显示出非常好的可伸缩性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Parallelization of MATLAB Stencil Applications for Multi-core Clusters
This paper presents the automatic parallelization of Stencil codes written in MATLAB for distributed systems. The compiler translates MATLAB source into C code and automatically parallelizes using MPI. For clusters of multi-cores, also a hybrid approach is presented where the generated code combines MPI and OpenMP parallelization. The parallelization concepts are evaluated with two stencil computation benchmarks. The automatically generated code not only outperforms the MATLAB code, but shows also a very good scaling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1121
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信