四元数接触几何中的内禀扭转

IF 1.2 2区 数学 Q1 MATHEMATICS
D. Conti
{"title":"四元数接触几何中的内禀扭转","authors":"D. Conti","doi":"10.2422/2036-2145.201407_004","DOIUrl":null,"url":null,"abstract":"We investigate quaternionic contact (qc) manifolds from the point of view of intrinsic torsion. We argue that the natural structure group for this geometry is a non-compact Lie group K containing Sp(n)H^*, and show that any qc structure gives rise to a canonical K-structure with constant intrinsic torsion, except in seven dimensions, when this condition is equivalent to integrability in the sense of Duchemin. \nWe prove that the choice of a reduction to Sp(n)H^* (or equivalently, a complement of the qc distribution) yields a unique K-connection satisfying natural conditions on torsion and curvature. \nWe show that the choice of a compatible metric on the qc distribution determines a canonical reduction to Sp(n)Sp(1) and a canonical Sp(n)Sp(1)-connection whose curvature is almost entirely determined by its torsion. We show that its Ricci tensor, as well as the Ricci tensor of the Biquard connection, has an interpretation in terms of intrinsic torsion.","PeriodicalId":50966,"journal":{"name":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","volume":"6 1","pages":"625-674"},"PeriodicalIF":1.2000,"publicationDate":"2013-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Intrinsic torsion in quaternionic contact geometry\",\"authors\":\"D. Conti\",\"doi\":\"10.2422/2036-2145.201407_004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate quaternionic contact (qc) manifolds from the point of view of intrinsic torsion. We argue that the natural structure group for this geometry is a non-compact Lie group K containing Sp(n)H^*, and show that any qc structure gives rise to a canonical K-structure with constant intrinsic torsion, except in seven dimensions, when this condition is equivalent to integrability in the sense of Duchemin. \\nWe prove that the choice of a reduction to Sp(n)H^* (or equivalently, a complement of the qc distribution) yields a unique K-connection satisfying natural conditions on torsion and curvature. \\nWe show that the choice of a compatible metric on the qc distribution determines a canonical reduction to Sp(n)Sp(1) and a canonical Sp(n)Sp(1)-connection whose curvature is almost entirely determined by its torsion. We show that its Ricci tensor, as well as the Ricci tensor of the Biquard connection, has an interpretation in terms of intrinsic torsion.\",\"PeriodicalId\":50966,\"journal\":{\"name\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"volume\":\"6 1\",\"pages\":\"625-674\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2013-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.201407_004\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali Della Scuola Normale Superiore Di Pisa-Classe Di Scienze","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2422/2036-2145.201407_004","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

从本征扭转的角度研究了四元数接触流形。我们论证了该几何的自然结构群是一个包含Sp(n)H^*的非紧李群K,并证明了任何qc结构都会产生一个具有恒定内禀扭转的正则K结构,除非在七维中,当这个条件等价于Duchemin意义上的可积性。我们证明了选择对Sp(n)H^*的约简(或等价地,qc分布的一个补)产生一个唯一的k -连接,满足在扭转和曲率上的自然条件。我们证明了qc分布上相容度规的选择决定了一个正则化到Sp(n)Sp(1)和一个正则Sp(n)Sp(1)-连接,其曲率几乎完全由其扭转决定。我们证明了它的里奇张量,以及比夸德连接的里奇张量,都可以用内在扭转来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrinsic torsion in quaternionic contact geometry
We investigate quaternionic contact (qc) manifolds from the point of view of intrinsic torsion. We argue that the natural structure group for this geometry is a non-compact Lie group K containing Sp(n)H^*, and show that any qc structure gives rise to a canonical K-structure with constant intrinsic torsion, except in seven dimensions, when this condition is equivalent to integrability in the sense of Duchemin. We prove that the choice of a reduction to Sp(n)H^* (or equivalently, a complement of the qc distribution) yields a unique K-connection satisfying natural conditions on torsion and curvature. We show that the choice of a compatible metric on the qc distribution determines a canonical reduction to Sp(n)Sp(1) and a canonical Sp(n)Sp(1)-connection whose curvature is almost entirely determined by its torsion. We show that its Ricci tensor, as well as the Ricci tensor of the Biquard connection, has an interpretation in terms of intrinsic torsion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Annals of the Normale Superiore di Pisa, Science Class, publishes papers that contribute to the development of Mathematics both from the theoretical and the applied point of view. Research papers or papers of expository type are considered for publication. The Annals of the Normale Scuola di Pisa - Science Class is published quarterly Soft cover, 17x24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信